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Timetabling based on the set of all planned frips:

Timetabiing based on the set of all pofential frips
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ALNS: Destroy Operators

Random:
Less frequent choices:
Line direction:

Proximity:

Proximity o cancellation:

A random set of vehicle and driver pairs is selected.
The least frequently chosen pairs of the previous iterations are selected.

Select pairs that contain trips of a randomly chosen direction are selected.
This is done to enable shifting of the corresponding trips.

This destroy operator aims at increasing the chance of improvement by
considering pairs that are close to a reference pair e in both time and
space. We define this proximity by calculating

i ) ” t — at: ) it — at:
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with Cjj representing the cost of connecting frip i and j in the same duty
(c,/» = oo if they cannot be feasibly connected) and d)} — at; being the
time from the end of trip i fo the beginning of trip j, which is weighed by a
factor 8.

Similar to the previous operator, but instead of a reference pair we
compare the proximity to the currently cancelled trips.
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ALNS: Repair Operators

Random:
Less frequent choices:
Line direction:

Proximity:

Proximity o cancellation:

A random set of vehicle and driver pairs is selected.
The least frequently chosen pairs of the previous iterations are selected.

Select pairs that contain trips of a randomly chosen direction are selected.
This is done to enable shifting of the corresponding trips.

This destroy operatfor aims at increasing the chance of improvement by
considering pairs that are close fo a reference pair e in both time and
space. We define this proximity by calculating
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(cjj = oo if they cannot be feasibly connected) and df; — at; being the
time from the end of trip i fo the beginning of trip j, which is weighed by a
factor 8.

Similar to the previous operator, but instead of a reference pair we
compare the proximity to the currently cancelled trips.
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ALNS: Repair Operators

Timetabling based on the set of all planned trips:
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ALNS: Repair Operators

Random:
Less frequent choices:
Line direction:

Proximity:

Proximity o cancellation:

A random set of vehicle and driver pairs is selected.
The least frequently chosen pairs of the previous iterations are selected.

Select pairs that contain trips of a randomly chosen direction are selected.
This is done to enable shifting of the corresponding trips.

This destroy operator aims at increasing the chance of improvement by
considering pairs that are close to a reference pair e in both time and
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(c,j = oo if they cannot be feasibly connected) and d)} — at; being the
time from the end of trip i fo the beginning of trip j, which is weighed by a
factor 8.

Similar to the previous operator, but instead of a reference pair we
compare the proximity to the currently cancelled trips.
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ALNS: Repair Operators

Timetabling based on the set of all potential trips:
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e Constraint Shortest Path Problem
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Constraint Shortest Path Problem
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Constraint Shortest Path Problem
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Constraint Shortest Path Problem

Motivated by Dumitrescu and Boland (2003)

Preprocessing and all pairs shortest path problems to reduce
computational burden.
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Constraint Shortest Path Problem

min w¥x maxzsomin W x + ( Z wiixj — (W —v))
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0, else, st X gieaXi — DpeaXy =1, ifi=s",
ieV. 0, else,
YlipeaWiXy < We—v se S\, ev,
xj€{0,1} (i) € A, X € {0, 1} (i) € A,

Candidate: Benedikt BienhUls (UniPi) November 23,



Constraint Shortest Path Problem

Algorithm 1 Preprocessing
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Step O:
Initialize:
U= (V| = 1) maxijeacj+ 1, U=y

Step 1:
Compute ng forallje V
if no path from 0 to 1 was found then
if U= Up then
STOP: the problem is infeasible
else
STOP: the path corresponding to U is an optimal
solution
else
if wi(Qg,) < Weforalls € Sthen
if ¢(QF,) < Uthen QF, is an optimal solution
else STOP: the path corresponding to U is an
optimal solution
else
if @& ; < Uthen
STOP: the path corresponding to U is an opti-

mal solution
else L = QF
Step 2:
fors € Sdo .
Calculate Qéf(w )forallje V
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3n
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37:

38:
39:

°

40:

S

if we(@3%")) > g then

ifU= Up then STOP: the problem is infeasible
else STOP: the path corresponding to U is an
optimal solution
else it e (Q55"7) < W¥ vs' € Sthen U = c(@)7™))

Step 3:

i Qéff(ws) + Qﬂ"‘wi) > WS for some s € S then
delete vertex i as well as its incident arcs
else if F; + @f] > Uthen
delete vertex i as well as its incident arcs
forie{0,...,|V|— 1} do
if ws(Qéﬁ(Ws)) +w ws(é)ff(w:)) > WS for some
se Sthen
delete (i,))
else if ¢(&F)) + ¢; + ¢(Qf) > U then delete (i.j)
else if w3(Q5)) + wj + wi(Q7) < Weforalls e S
then
U=c(&f) +cj+c(QF)
Step 4:
if the graph or U was changed in Step 2 or 3 then go
tostep 1
else STOP
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Constraint Shortest Path Problem

Algorithm 2 Label Setting Algorithm

Step O:
Run Algorithm 1 to obtain Q7 and @™ forall s € Sand i e
V\{1}
Initialize:
Lo ={(0,0)}, Ly =0 forallie V\{0}

Step 1:
forj € V\{1} in fopological order do
for (i,j) € Ado
for labels (w(Q4), c(Q")) € L, do
if wi(@) + wi + wi(QF™)) < W forall s e Sand
(@) +cj+c(Q7) < Uthen
Add the corresponding label to L; while maintain-
ing a lexicographic order
if wi(@) + w; + wi(Q7) < Wi forall s € Sthen
U=c(@)+cj+c(QF)
Remove dominated Labels from L;
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Q ALNS extensions
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ALNS extensions

Retiming (Veelenturf et al. (2012), van Lieshout et al. (2018))

For trip that is cancelled after an iteration of ALNS, we infroduce
shifting opportunities. If all cancelled trips already have shifting
copies, we allow shifting for trips within a small proximity of
cancelled trips.

Trip Merging (Gintner et al. (2005), Sevim et al. (2020))

Trips that are performed in succession on the same vehicle and
driver pair in multiple iterations of ALNS are merged to a single
trip. This only considered trips of the destroyed part of the
solution. )
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