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Given a graph G = (V ,E) with |V | = n (vertices) and |E | = m (edges)
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Clique→ a subset K ⊆ V of vertices inducing a complete graph G[K ].

Maximum Clique: K = {v1, v2, v3, v4, v5} → clique number ω(G) = 5
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Research questions and motivation

I We are looking for the most vital (also called most vulnerable or most
critical) vertices of a graph

I We are concerned in preserving (or limiting) the cohesiveness property.

I “tightly knit” and cohesive subgraphs are frequently identified using the
notion of clique, i.e., a subset of vertices that are pairwise connected.

We study the problem of identifying a most vital subset of vertices with
respect to the clique number.

I In the context of graph theory, we want to analyze the resilience of
networks with respect to clique-interdiction attacks→ removal of vertices

Clique-Interdiction curve of a graph
I the decrease of the size of the maximum clique as a function of an

incremental interdiction budget
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The Maximum Clique Vertex-Interdiction Problem (CIP)

I We study the two player zero-sum Stackelberg game in which the leader
interdicts (removes) a maximum number of vertices from a simple graph,
and the follower searches for the maximum clique in the interdicted
graph.

I The goal of the leader is to derive an interdiction strategy which will
result in the worst possible outcome for the follower.

Definition
Given a graph G and an interdiction budget k ∈ N, the
maximum clique interdiction problem is to find a subset of at most k vertices
to delete from G so that the size of the maximum clique in the remaining
graph is minimized.

The set of interdicted vertices is called an interdiction strategy
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The clique number is ω(G) = 4 (K2 = {v8, v9, v10, v11}, there are others!)
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An optimal interdiction strategy with k = 2 (ω(G[V \ {v4, v11}]) = 3)
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The clique number is ω(G) = 4 (K2 = {v8, v9, v10, v11}, there are others!)
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An optimal interdiction strategy with k = 2 (ω(G[V \ {v4, v11}]) = 3)



Clique Interdiction Problems Structural Properties, Modeling and Exact Algorithms Computational Results Facial study

v1 v2

v3v4

v5v6

v7v8

v9v10

v11

v12

Another optimal interdiction strategy with k = 2 (ω(G[V \ {v3, v8}]) = 3)
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Another optimal interdiction strategy with k = 2 (ω(G[V \ {v4, v9}]) = 3)
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Another optimal interdiction strategy with k = 2 (ω(G[V \ {v3, v8}]) = 3)
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Another optimal interdiction strategy with k = 2 (ω(G[V \ {v4, v9}]) = 3)



Clique Interdiction Problems Structural Properties, Modeling and Exact Algorithms Computational Results Facial study

Centrality measure vs most vital nodes with respect to ω(G)
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Other centrality measures rank the vertices {v5, v6} as the most central ones.

I degree centrality: number of incident edges;
I closeness centrality: average length of the shortest path between the

node and all other nodes in the graph.
I betweenness centrality: number of times a node acts as a bridge along

the shortest path between two other nodes

{v5, v6} are not the most critical ones for cohesiveness!
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Example: ω(G) = 5

v1 v2

v3

v4

v5v6

v7

v8

v9

Maximum Clique K̃ = {v3, v4, v7, v8, v9}

What is an optimal
interdiction policy with
k = 2?
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Example: ω(G) = 5
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Maximum Clique K̃ = {v3, v4, v7, v8, v9} An Optimal interdiction policy, k = 2

ω(G[V \ {v4, v8}]) = 4

There are 2 cliques of size 4!
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Example: ω(G) = 5
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Maximum Clique K̃ = {v3, v4, v7, v8, v9}

What is an optimal
interdiction policy with
k = 3?
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Example: ω(G) = 5
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Maximum Clique K̃ = {v3, v4, v7, v8, v9} An Optimal interdiction policy, k = 3

ω(G[V \ {v4, v7, v8}]) = 3

There are 2 cliques of size 3!
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Example: ω(G) = 5
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Example: ω(G) = 5
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Maximum Clique K̃ = {v3, v4, v7, v8, v9} An Optimal interdiction policy, k = 4

ω(G[V \ {v3, v4, v7, v8}]) = 2

There are 2 cliques of size 2!
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Literature Overview

I No exact specialized algorithms for CIP exit in the literature

I CIP belongs to a larger family of Interdiction Games under Monotonicity
(Fischetti et al. 16; focus on knapsack interdiction games).

I Games where the follower subproblem satisfies a monotonicity (or
hereditary) property, exploited to derive a single-level integer linear
programming formulation.

Related problems

I Minimum Vertex Blocker Clique Problem (Mahdavi Pajouh et al. 16), they
tackle graphs with at most 200 vertices and most of the instances are
unsolved

I Edge Interdiction Clique Game (Tang et al. 16), they tackle graphs with
15 vertices and most of the instances are unsolved
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Complexity

Decision Version of CIP (d-CIP): Is there an interdiction strategy of size at
most k such that the maximum clique in the interdicted graph is not greater
than some given bound `?

I Observe that the answer to the decision problem is YES if only if the
optimal CIP solution is ≤ `− 1.

I d-CIP is not in NP, to test whether the resulting graph does not contain a
clique of size ` requires answering the decision version of:

I the maximum clique problem (NP-complete).

I d-CIG has been also called Generalized Node Deletion (GND) problem

Proposition (Rutenburg1991,Rutenburg1994)
The decision version of CIP is ΣP

2 -complete.
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Bi-Level ILP Formulation

wu =

{
1, if vertex u is interdicted by the leader,
0, otherwise

u ∈ V

xu =

{
1, if vertex u is used in the maximum clique of the follower,
0, otherwise

u ∈ V

I LetW be the set of incidence vectors of all feasible interdiction policies:

W =

{
w ∈ {0, 1}n :

∑
u∈V

wu ≤ k

}
I Let K be the set of incidence vectors of all cliques in the graph G:

K =
{

x ∈ {0, 1}n : xu + xv ≤ 1, uv ∈ E
}

Property
CIG can be restated as follows:

min
w∈W

max
K∈K

{
|K | −

∑
u∈K

wu

}
. (0.1)



Clique Interdiction Problems Structural Properties, Modeling and Exact Algorithms Computational Results Facial study

Bi-Level ILP Formulation

A new continuous variable ϑ→ the size of max clique in the interdicted graph

min ϑ (0.2a)

subject to
∑
u∈V

wu ≤ k (0.2b)

wu ∈ {0, 1} u ∈ V (0.2c)

where ϑ = max
∑
u∈V

xu (0.2d)

s.t. xu ≤ 1− wu u ∈ V (0.2e)

xu + xv ≤ 1 uv ∈ E (0.2f)

xv ∈ {0, 1} v ∈ V (0.2g)

This formulation can be solved via a generic Solver for Mixed-Integer Bilevel
Linear Problems, e.g.,

https://msinnl.github.io/pages/bilevel.html

https://msinnl.github.io/pages/bilevel.html
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Single-Level ILP Reformulation

For every feasible interdiction policy w̄ ∈ W, the follower’s problem becomes:

max
x∈K

{∑
u∈V

xu : xu ≤ 1− w̄u, u ∈ V

}
= max

x∈K

∑
u∈V

xu(1− w̄u)

I Constraints of the follower independent from leader actions.

Proposition
The following is a valid ILP formulation for CIP:

min
w∈W

ϑ (0.3)

ϑ ≥ |K | −
∑
u∈K

wu︸ ︷︷ ︸
size of K in the interdicted graph

K ∈ K (0.4)

I This model can be effectively solved via Branch and Cut!
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Separation of the Clique Interdiction (CI) Cuts (integer points)

I Given a feasible realization (interdiction policy) w̄ ∈ W and the current
value ϑ̄, we need to answer to the following question:

Are all the CI Cuts satisfied?

ϑ̄ ≥ |K | −
∑
u∈K

w̄u︸ ︷︷ ︸
size of K in the interdicted graph

K ∈ K

I Separation Problem (SP):

max

{∑
u∈V

(1− w̄u)xu : xu + xv ≤ 1, uv ∈ E

}

I The Maximum Clique Problem in the interdicted graph G[V \ Vw̄ ]

I Let K̄ be the maximum clique: if |K̄ | > ϑ̄ then a violated CI cut is found
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Exact Solution Framework – CLIQUE-INTER

(i) Effective separation procedure of the Clique Interdiction (CI) cuts:

I Specialized combinatorial branch-and-bound algorithm (IMCQ) for solving
the maximum clique problem once the nodes of an interdiction policy have
been removed from the graph G.

I Make the separated cliques maximal

(ii) Tight CIP upper and lower bounds (`min and `max ):

I To initialize the lower bound value of the variable θ we used the global lower
bound `min using node-disjoint maximum cliques

I To determine a high-quality feasible CIP solution of value `max , we apply a
battery of effective sequential greedy heuristics.

(iii) The graph Reduction Technique:

I For large-scale real-world graphs the ILP formulation unless the input graph
can be safely reduced to a smaller one.
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Separating the Clique Interdiction Cuts with IMCQ

The separation problem requires solving the MCP in a number of
induced subgraphs G[V \ Vw̄ ], where Vw̄ is a feasible interdiction policy

I We have designed a combinatorial branch-and-bound (B&B) algorithm
inspired by the ideas described in (Li 17) and (San Segundo16).

I Specialized n-ary branching scheme, based on the concept of Pruned
and Branching Sets

I Using tight upper bounds on the infrachromatic bounding functions
(potentially stronger than the chromatic number!)

I Plus! Compact bitstring representation both for vertex sets and the
adjacency matrix and peeling procedures
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The Pruned and Branching Sets (Main Ideas)

I At each node of the branching tree we have: (i) a (non-maximal)
clique K̂ ⊆ V (feasible solution), (ii) a subproblem graph Ĝ = (V̂ , Ê) and
(iii) a global lower bound ω̃

I The subproblem graph is the Intersection of the neighboorhoods of the
vertices in K̂

V̂ =
⋂
v∈K̂

N(v), and Ê = E(V̂ ).

v0

v1v2

v3

v4 v5

Branching on v3 → K̂ = {v3}

v0

v2

v3

v4

The subproblem graph Ĝ
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The Pruned and Branching Sets (Main Ideas)

I For a pair (Ĝ, ω̃) we want to determine a set P ⊆ V̂ for which a MCP
upper bound UB(P) does not allows to improve the incumbent solution
value ω̃

I The Pruned and Branching Sets can be defined as follows:

P = arg max
P̂⊆V̂

{
|P̂| : ω̃ − |K̂ | ≥ UB(P̂) ≥ ω(Ĝ[P̂])

}
, and B = V̂ \ P.

I By construction, P is the largest subset of V̂ with the property that by
branching on the vertices of P we cannot improve the incumbent solution
value, since

ω̃︸︷︷︸
Lower Bound

≥ UB(P) + |K̂ |︸ ︷︷ ︸
Upper Bound

I For this reason, to improve ω̃, one has to branch first on at least one
vertex from the branching set B.
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The Vertex Coloring Problem (VCP)

Given a graph G = (V ,E), the VCP asks for a partition of the vertex set

C = {S1,S2, . . . ,Sk},

with the min number of colors, s. t. vertices linked by an edge have diff colors.

v2
v7

v1

v6
v5

v10

v4

v9

v3

v8

S1 = {v1, v4, v7, v8}

S2 = {v2, v9, v10}

S3 = {v3, v6, v5}

chromatic number → χ(G) = 3

I A coloration C is a partition a of vertices into stables sets of G
I Clique number→ ω(G) = 2 ≤ χ(G)
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The Pruned and Branching Sets (Main Ideas)
I Computing the largest pruned set P is computationally challenging and

in some case it is not useful

I For this reason we compute it heuristically using feasible coloring as
upper bounds UB(P)

I Example: Consider the following subproblem graph, ω̃ = 4 and |K̂ | = 2

v0

v1v2

v3

v4 v5

The subproblem graph Ĝ

v0

v1v2

v3

v4 v5

Pruned Set B = {v0, v1, v3, v5}
Branching Set B = {v2, v4}
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Infra-chromatic Bounding Functions (Main Ideas)

Partial MAX-SAT Bound

v1

v2

v3

v4 v5

cycle C of size 5
ω(C) = 2, χ(C) = 3

I Hard Clauses (non-edges)

h1 ≡ x̄1 ∨ x̄3, h2 ≡ x̄1 ∨ x̄4

h3 ≡ x̄2∨x̄4, h4 ≡ x̄2∨x̄5, h5 ≡ x̄3∨x̄5

I Soft Clauses (colors)

s1 ≡ x1∨x3, s2 ≡ x2∨x4, s3 ≡ x5

I Unit Literal Propagation

x5 = 1→ x2 = 0 (h4)→ x4 = 1 (s2)

x5 = 1→ x3 = 0 (h5)→ x1 = 1 (s1)

I Inconsistency!
→ h2 core {s1, s2, s3}

I Stronger Bound
→ χ(C) > 3− 1 = 2 ≥ ω(C)
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Computing the global lower bound `min

Proposition
Given a subgraph G′ = (V ,E ′) with E ′ ⊂ E, the optimal CIP solution on G′

provides a valid lower bound for the optimal CIP solution on G.
I rather counter-intuitive! reducing the input graph, instead of obtaining a

valid upper bound for a minimization problem, we obtain a valid lower
bound (the feasibility space of the follower is reduced)

Corollary
Given a set Qp+1 = (K1, . . . ,Kp+1) of vertex-disjoint cliques of G, such that
|K1| ≥ · · · ≥ |Kp+1|, a valid lower bound `min for the CIP can be obtained by
computing

`min =

max
{
|Kp+1|, |Kp| − 1−

⌊
k−k(Qp)

p

⌋}
, if k < k(Qp∗+1)

|Kp+1| − 1−
⌊

k−k(Qp+1)

p+1

⌋
, otherwise

(0.5)

Where k(Qq) denote the size of an optimal interdiction policy necessary to
reduce the size of all cliques in Qq to |Kq | − 1.

k(Qq) = q +

q−1∑
i=1

i · (|Ki | − |Ki+1|).
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Reducing the input graph

I The clique number of v is the size of the largest clique with v (ωG(v)) .

I The κ-core of a graph G is a maximal subgraph in which all vertices
have degree at least κ

I The coreness-number of a vertex v , is equal to κ if v belongs to a κ-core
but not to any (κ+ 1)-core.

ωG(v) ≤ coreness(v) + 1 ≤ |N(v)|+ 1 v ∈ V . (0.6)

The following result identifies redundant vertices in the input graph G

Proposition
Let v be an arbitrary vertex from V. If ωG(v) ≤ `opt, then v cannot be part of a
minimal optimal interdiction policy.

I instead of the (unknown) value of `opt, a lower bound `min

I instead of ωG(v) (NP-hard), an upper bound coreness(v) + 1 (polynomial)
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A MIP based upper bound

I The CIP can be formulated as follows:

min
w∈W

max
∑
u∈V

(1− wu)xu (0.7a)

s.t. xu + xv ≤ 1 uv ∈ E (0.7b)

xu ∈ {0, 1} u ∈ V (0.7c)

I By relaxing the integrality constraints to xu ≤ 1, the
dual of the inner maximization problem is:

min
(α,β)≥0

∑
uv∈E

αuv +
∑
u∈V

βu (0.8a)

s.t.
∑

v∈δ̄(u)

αuv + βu ≥ 1− wu u ∈ V (0.8b)
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A MIP based upper bound

I By embedding this dual, we finally obtain a
compact ILP single level model which we call U-CIP

(U-CIP) min
(α,β)≥0

∑
uv∈E

αuv +
∑
u∈V

βu

s.t.
∑
uv∈E

wuv ≤ k

∑
v∈δ̄(u)

αuv + βu ≥ 1− wu u ∈ V

wuv ∈ {0, 1} uv ∈ E .

I The U-CIP has a polynomial number of constraints and variables.
However, the solution value of U-CIP only provides an upper bound for
the CIP.

I An addition upper bound is computed by solving the MCP on the
interdicted graph using the interdiction policy w̃ (optimal U-CIP solution)
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Test-bed Instances

I Set A – Random Erdős-Rényi random G(n, p) – 220 instances:

I n = |V | ∈ {50, 75, 100, 125, 150}
I p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98}
I k ∈ {d0.05 · |V |e, d0.1 · |V |e, d0.2 · |V |e, d0.4 · |V |e}

I Set B – Synthetic graphs – 32 instances:

I Instances with |V | = 200 from the 2nd DIMACS challenge on Maximum
Clique, Graph Coloring, and Satisfiability;

I k ∈ {20, 40}

I Set C – Real-world (sparse) networks – 60 instances.

I instances with up to ≈ 100, 000 nodes and ≈ 3, 200, 000 edges.

I Social Networks, Interaction networks, Recommendation networks,
Collaboration networks, Technological networks, Scientific computing
networks

I k ∈ {d0.005 · |V |e, d0.01 · |V |e
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Performance Profile – Set A

1. CLIQUE-INTER: this is the benchmark setting of our exact algorithm,
fully exploiting all its components.

2. CLIQUE-INTER (no bounds): in this configuration we remove the use of
CIP upper and lower bounds (`min and `max ).

3. CLIQUE-INTER (no maximality): in this configuration we did not make
maximal the cliques separated using IMCQ before adding the
corresponding CIC.

4. Basic CLIQUE-INTER with IMCQ: in this configuration all components
are removed, except the use of IMCQ to separate CICs.

5. Basic CLIQUE-INTER with CPLEX: this configuration corresponds to the
basic branch-and-cut approach in which CICs are separated using
CPLEX as a black-box clique solver applied to the classical clique ILP
formulation.
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Performance Profile – Set A
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Comparison with state-of-the-art generic bilevel solver (BILEVEL)

CLIQUE-INTER BILEVEL

|V | # # solved time exit gap root gap # solved time exit gap root gap

50 44 44 0.01 - 0.16 28 68.58 6.44 8.50

75 44 44 1.45 - 0.41 14 120.19 9.47 10.91

100 44 37 9.30 1.00 0.98 7 164.42 12.65 13.11

125 44 35 13.43 1.33 1.20 2 135.33 13.88 14.73

150 44 33 27.23 1.91 1.43 1 397.52 16.42 16.39

[1] Fischetti M, Ljubić I, Monaci M, Sinnl M.
A new general-purpose algorithm for mixed-integer bilevel linear programs.
Operations Research, 65(60):1615–1637, 2017.
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Results on Real-world (sparse) networks

k = d0.005 · |V |e k = d0.01 · |V |e

|V | |E | ω [s] [s] |Vp| [s] |Vp|

socfb-UIllinois 30,795 1,264,421 0.5 24.4 10,456 41.6 8290
ia-email-EU 32,430 54,397 0.0 0.6 30,375 0.5 29,212
rgg_n_2_15_s0 32,768 160,240 0.0 - - 0.2 30,848
ia-enron-large 33,696 180,811 0.0 2.2 27,791 29.5 26,651
socfb-UF 35,111 1,465,654 0.3 17.8 14,264 87.8 10,708
socfb-Texas84 36,364 1,590,651 0.3 24.6 10,706 74.3 8,704
tech-internet-as 40,164 85,123 0.0 1.4 31,783 - -
fe-body 45,087 163,734 0.1 1.8 2,259 1.8 2259
sc-nasasrb 54,870 1,311,227 0.1 - - 145.5 1,195
soc-themarker_u 69,413 1,644,843 2.1 T.L. 35,678 T.L. 31,101
rec-eachmovie_u 74,424 1,634,743 0.7 - - 367.3 13669
fe-tooth 78,136 452,591 0.5 18.9 7 19.0 7
sc-pkustk11 87,804 2,565,054 1.1 70.7 2,712 57.1 2,712
soc-BlogCatalog 88,784 2,093,195 11.7 T.L. 51,607 T.L. 46,240
ia-wiki-Talk 92,117 360,767 0.2 49.2 72,678 87.4 72,678
sc-pkustk13 94,893 3,260,967 1.3 724.9 2,360 879.2 2,354
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Clique-Interdiction curve of a graph
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Clique-Interdiction curve of a graph
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CLIQUE-INTER k = 20 CLIQUE-INTER k = 40

µ ω(G) timeω LB UB time `min `max LB UB time `min `max

brock200_1 0.75 21 0.2 18 18 938.2 16 18 15 17 T.L. 13 17
brock200_2 0.50 12 0.0 9 9 0.1 8 10 8 9 T.L. 7 9
brock200_3 0.61 15 0.0 12 12 1.0 11 13 11 11 160.6 9 12
brock200_4 0.66 17 0.0 14 14 2421.8 12 15 12 13 T.L. 10 13
c-fat200-1 0.08 12 0.0 10 10 - 10 10 9 9 - 9 9
c-fat200-2 0.16 24 0.0 20 20 - 20 20 18 18 - 18 18
c-fat200-5 0.43 58 0.0 52 52 0.0 51 52 46 46 0.0 44 46
san200_0.7_1 0.70 30 0.0 17 17 5.4 16 18 15 15 134.4 14 17
san200_0.7_2 0.70 18 0.0 14 14 16.7 13 15 12 12 5.6 11 15
san200_0.9_1 0.90 70 0.0 50 50 - 50 50 40 40 13.3 39 49
san200_0.9_2 0.90 60 0.1 41 41 3.2 41 42 34 34 2266.9 33 41
san200_0.9_3 0.90 44 0.0 33 34 T.L. 32 37 28 31 T.L. 26 34
sanr200_0.7 0.70 18 0.1 15 15 29.2 14 16 13 14 T.L. 11 15
sanr200_0.9 0.90 42 1.9 33 35 T.L. 31 35 28 32 T.L. 25 33
gen200_p0.9_44 0.90 44 0.1 34 34 674.4 32 38 29 31 T.L. 26 36
gen200_p0.9_55 0.90 55 0.1 38 38 62.4 37 41 32 33 T.L. 29 40

Table 1: Computational results obtained by the CLIQUE-INTER on the instances with
|V | = 200 from the 2nd DIMACS Challenge.
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CPU times group by the graph density
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CPU times group by the size and the interdiction budget
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Facial study

Convex hull of feasible solutions of the CIP formulation

P(G, k) = conv

{
w ∈ {0, 1}|V |, θ ≥ 0 : θ +

∑
u∈K

wu ≥ |K |,
∑
u∈V

wu ≤ k ,K ∈ K

}
.

Proposition
The polytope P(G, k) is full dimensional.

Proposition
Let u ∈ V. The trivial inequality wu ≤ 1 defines a facet of P(G, k) if and only
if k ≥ 2.

Proposition
Let u ∈ V. The trivial inequality wu ≥ 0 defines a facet of P(G, k).

Lemma
Let K ∈ K be an arbitrary clique in G. If |K | ≤ `opt, then the associated clique
interdiction inequality (0.4) cannot define a facet.



Clique Interdiction Problems Structural Properties, Modeling and Exact Algorithms Computational Results Facial study

Facial study

Lemma
Let K ∈ K be an arbitrary clique in G. The inequality θ +

∑
u∈K wu ≥ |K |

defines a facet only if K is maximal.

Lemma
Let K be a maximal clique and v ∈ K . If

ω(G[V \V ′]) ≥ |K |−|V ′∩K |+1 ∀V ′ ⊆ V where v ∈ V ′ and |V ′| ≤ k , (0.1)

then there exists αv ≤ 0 such that the associated clique interdiction cut (0.4)
can be down-lifted to

θ +
∑

u∈K\{v}

wu + αv wv ≥ |K |.

Corollary
Let K ⊂ V be a clique. If there exists v ∈ K satisfying (0.1) then the
inequality (0.4) cannot define a facet.
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Facial study

I the following Proposition provides necessary and sufficient conditions
under which the CI cuts are facet defining.

I major theoretical result! it allows to characterize the strength of the ILP
formulation upon which our solution framework is built on.

Theorem
Let K ∈ K be a maximal clique. Inequality (0.4) associated with K defines a
facet of P(G, k) if and only if
I |K | ≥ `opt + 1

I for all v ∈ K , there exists a subset V ′ ⊆ V such that v ∈ V ′, |V ′| ≤ k
and ω(G[V \ V ′]) + |V ′ ∩ K | ≤ |K |.

It is NP-hard to down-lift coefficients of a clique interdiction cut

I Heuristic lifting procedure! by underestimating the left-hand-side and
overestimating the right-hand-side of the condition.
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Conclusions

I We developed the first study on how to find the most vital k vertices of a
graph, so as to reduce its clique number

I We derived tight combinatorial lower and upper bounds

I We derive a single-level reformulation based on an exponential family of
Clique-Interdiction Cuts

I We provide necessary and sufficient conditions under which these cuts
are facet defining and we propose a fast lifting procedures

I We developed a state-of-the-art algorithm for finding maximum cliques in
interdicted graphs

I Social Networks are “vulnerable” to vertex-deletion attacks!

THANKS FOR YOUR ATTENTION!!!!
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