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BiqBin

Project:

“High-Performance solver for Binary Quadratic Problems”

Given a quadratic objective function f pxq “ cJx ` xJFx , where c P Rn

and F P Rnˆn, and the equality constraints Ax “ b, where A P Zmˆn and
b P Zm, we want to solve

f ˚ – min
!

f pxq : Ax “ b, x P t´1, 1un
)

.

ñ novel solver BiqBin
1 exact penalty method over discrete sets EXPEDIS which reformulates

the input problem into an equivalent max-cut instance

2 improved semidefinite-based branch-and-bound algorithm for max-cut

ñ use of a high-performance computer located in Slovenia

ñ web application and more info at http://www.biqbin.eu/
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Exact Penalty Method Over Discrete Sets

Consider the original problem

f ˚ – min
!

f pxq : Ax “ b, x P t´1, 1un
)

,

we derive an equivalent max-cut instance.

We use EXPEDIS, an EXact PEnalty method over DIscrete Sets:

initial problem

computation of bounds by using some SDP-relaxations

definition of the penalty and the threshold parameters

Lagrangian approach penalizing the equality constraints

reformulation as max-cut
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Penalization

Consider the original problem

f ˚ – min
!

f pxq : Ax “ b, x P t´1, 1un
)

,

we want to penalize the linear constraints.

We use a Lagrangian approach on the equality constraint Ax “ b, thus,
given a suitable penalty parameter σ, we obtain the penalized function

hpxq “ f pxq ` σ‖Ax ´ b‖2

and the penalized problem

h˚ “ min
!

hpxq : x P t´1, 1un
)

.
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Main theorem

For ease the notation we partition the set t´1, 1un into

∆ “ tx P t´1, 1un : Ax “ bu and ∆c “ t´1, 1unz∆.

Theorem

Let f ˚ and h˚ be the optimal values of the original and the penalized
problem, respectively. Furthermore, assume we have a threshold parameter
ρ and a penalty parameter σ, satisfying the following conditions:

no feasible solution of the original problem has value greater than ρ,

for every x P ∆c , we have hpxq ą ρ.

If f ˚ ă `8, then h˚ “ f ˚. Moreover the original problem is infeasible if
and only if h˚ ą ρ.
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Proof

By integrality of A, b and x we have that ‖Ax ´ b‖2 P Z.

Recalling the definitions:

f pxq “ cJx ` xJFx hpxq “ cJx ` xJFx ` σ‖Ax ´ b‖2

It follows ‖Ax ´ b‖2

#

“ 0 ùñ hpxq “ f pxq ` 0 “ f pxq ď ρ if x P ∆

ě 1 ùñ hpxq ě f pxq ` 1 ¨ σ ą ρ if x P ∆c

` u `+σ

f px1q

hpx1q ą ρ
x1 P ∆c

hpxq for x P ∆

ρ

hpxq for x P ∆c

f px2q=hpx2q

x2 P ∆
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Final Reformulation

Max-cut instance

expand the norm ‖Ax ´ b‖2 as pAx ´ bqJpAx ´ bq

increase the dimension by one and fix first variable to 1

computation of Q P Rpn`1qˆpn`1q depending on A, b, c ,F and ρ

ùñ h˚ “ min
!

x̄JQx̄ : x̄ P t´1, 1un`1, x̄0 “ 1
)

The adjacency matrix of the resulting graph is

Aij “

$

’

’

&

’

’

%

0 if i “ j

2cj ´ 4σ pA‚,jq
J b if i “ 0 and i ‰ j

2ci ´ 4σ pA‚,i q
J b if j “ 0 and j ‰ i

4Fi ,j ` 4σ pA‚,jq
J A‚,i if 1 ď i , j ď n and i ‰ j

6 / 13



Final Reformulation

Max-cut instance

expand the norm ‖Ax ´ b‖2 as pAx ´ bqJpAx ´ bq

increase the dimension by one and fix first variable to 1

computation of Q P Rpn`1qˆpn`1q depending on A, b, c ,F and ρ

ùñ h˚ “ min
!

x̄JQx̄ : x̄ P t´1, 1un`1, x̄0 “ 1
)

The adjacency matrix of the resulting graph is

Aij “

$

’

’

&

’

’

%

0 if i “ j

2cj ´ 4σ pA‚,jq
J b if i “ 0 and i ‰ j

2ci ´ 4σ pA‚,i q
J b if j “ 0 and j ‰ i

4Fi ,j ` 4σ pA‚,jq
J A‚,i if 1 ď i , j ď n and i ‰ j

6 / 13



Considerations on Parameters

Consideration

We transform a binary quadratic problem with equality constraints into a
max-cut instance. The weights of the edges depend on the parameters
A, b, c, ,F and by the penalizer σ.

The choice of the penalty parameter has significant influence on the
tractability of the problem.

We want to keep its value as small as possible!
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Smallest penalty parameter

Upper and lower bounds

Considering the lower and the upper bounds

`˚ “ min tf pxq : x P ∆cu and u˚ “ max tf pxq : x P ∆u ,

we can define the following parameters:

ρ˚ “ u˚ and σ˚ “ u˚ ´ `˚ ` ε.

Theorem

The penalty parameter σ˚ “ u˚ ´ `˚ ` ε is the smallest possible, such that
the assumptions of the main theorem hold.
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Efficiently computable penalty parameter

Problem

Solving

`˚ “ min tf pxq : x P ∆cu and u˚ “ max tf pxq : x P ∆u ,

is in general as difficult as solving our original problem.

Thus we want to derive some penalty parameter which

is relatively small and

can be computed quickly.

Theorem

Given any pair of bounds p`, uq such that ` ď `˚ and u ě u˚.
Then it follows that the threshold ρ “ u and the penalty parameter
σ “ u ´ `` ε satisfy the assumptions of the main theorem.
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Previous work

Bounds and parameters from Lasserre
As far as we know the only work in this direction was of Lasserre: given

ˆ̀pûq “ minpmaxq

"

xF ,X y ` cJx :

"

1 xJ

x X

*

ě 0,Xii “ 1

*

,

he derived as parameters ρ̂ “ maxt|ˆ̀|, |û|u and σ̂ “ 2ρ̂` 1.

Our bounds and parameters

Let M “ rb,´As and Y “

„

1 xJ

x X



, we calculate the bounds

u1
“ max

!

cJx ` trpXJF q | Y ě 0, diagpX q “ e, MY “ 0
)

l 1
“ min

!

cJx ` trpXJF q | Y ě 0, diagpX q “ e, X P MET
)

,

where MET is the set of triangle and some 5-clique inequalities, i.e., cutting planes
which strengthen the relaxation.

Thus ρ1
“ u1 and σ1

“ u1
´ `1

` ε.
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Comparisons

Theorem

From the previous definitions, it follows easily

ρ̂ ě ρ1 and σ̂ ą σ1.

Considerations

We considered thousands of instances (both randomly generated and from the
max k-cluster problem).

the penalty parameter σ1 is in general 20% of σ̂

computing σ1 takes less than 2 minutes, while σ̂ less than 30 seconds

by using σ1 almost 70% of the instances were solved within 1.5 hours,
while by using σ̂ less than 45%

These first computational results validated our intuitions, thus we choose σ1 as
penalty parameter. We compare the solution of the max-cut instance (by using
BiqMac) with the solution of the original problem (by using commercial solvers).
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Results on Randomly Generated Instances

Randomly Generated Instances
We consider randomly generated instances: the parameters A, b, c and F are random,
from different sets. We consider instances with 80 and 100 variables and up to 15
constraints.
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Figure: Performance profile of the different solvers on all the randomly generated
instances
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Future work

improve the bounds by using different relaxations

test on different problems

use some specific approach for detecting possible infeasibility

find a way to penalize also some quadratic constraints
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