An Exact Penalty Method over Discrete Sets

Nicoldo Gusmeroli

joint work with Angelika Wiegele

TU Dortmund

nicolo.gusmeroli@math.tu-dortmund.de

Novmeber 24, 2020

ESR Days - online event

technische universitat
dortmund

oo —-
-—o
-0 =

Project:

“High-Performance solver for Binary Quadratic Problems”

1/13

http://www.biqbin.eu/

Project:
“High-Performance solver for Binary Quadratic Problems”
Given a quadratic objective function f(x) = c¢'x + x ' Fx, where c € R"

and F € R™", and the equality constraints Ax = b, where A€ Z™*" and
be Z™, we want to solve

f* = min {f(x): Ax = b, x € {—1,1}"}.

1/13

http://www.biqbin.eu/

Project:
“High-Performance solver for Binary Quadratic Problems”
Given a quadratic objective function f(x) = c¢'x + x ' Fx, where c € R"

and F € R™", and the equality constraints Ax = b, where A€ Z™*" and
be Z™, we want to solve

f* == min {f(x): Ax = b, x € {—1,1}"}.

= novel solver BiqBin

@ exact penalty method over discrete sets EXPEDIS which reformulates
the input problem into an equivalent max-cut instance

@ improved semidefinite-based branch-and-bound algorithm for max-cut
= use of a high-performance computer located in Slovenia

= web application and more info at http://www.bigbin.eu/
1/13

http://www.biqbin.eu/

Exact Penalty Method Over Discrete Sets

Consider the original problem
f* :== min {f(x): Ax =b, x€ {—1,1}”},

we derive an equivalent max-cut instance.

2/13

Exact Penalty Method Over Discrete Sets

Consider the original problem
f* :== min {f(x): Ax = b, x e {-1, 1}"},
we derive an equivalent max-cut instance.

We use EXPEDIS, an EXact PEnalty method over Dlscrete Sets:
initial problem

computation of bounds by using some SDP-relaxations

o

o

o definition of the penalty and the threshold parameters
o Lagrangian approach penalizing the equality constraints
o

reformulation as max-cut

2/13

Penalization

Consider the original problem
f* := min {f(x): Ax = b, x € {—1,1}”},

we want to penalize the linear constraints.

3/13

Penalization

Consider the original problem
f* := min {f(x): Ax = b, x e {-1, 1}”},

we want to penalize the linear constraints.

We use a Lagrangian approach on the equality constraint Ax = b, thus,
given a suitable penalty parameter o, we obtain the penalized function

h(x) = f(x) + o|/Ax — b|?
and the penalized problem

h* = min {h(x); xe{-1, 1}"}.

3/13

Main theorem

For ease the notation we partition the set {-1,1}" into

A={xe{-1,1}": Ax=b} and A°={-1,1}"\A.

Theorem

Let * and h* be the optimal values of the original and the penalized
problem, respectively. Furthermore, assume we have a threshold parameter
p and a penalty parameter o, satisfying the following conditions:

@ no feasible solution of the original problem has value greater than p,

o for every x € A°, we have h(x) > p.

4/13

Main theorem

For ease the notation we partition the set {-1,1}" into

A={xe{-1,1}": Ax=b} and A°={-1,1}"\A.

Theorem

Let * and h* be the optimal values of the original and the penalized
problem, respectively. Furthermore, assume we have a threshold parameter
p and a penalty parameter o, satisfying the following conditions:

@ no feasible solution of the original problem has value greater than p,
o for every x € A°, we have h(x) > p.

If f* < 400, then h* = f*. Moreover the original problem is infeasible if
and only if h* > p.

4/13

By integrality of A, b and x we have that ||Ax — b||? € Z.
Recalling the definitions:

f(x)=cx+x"Fx h(x) = c"x + x" Fx + o/ Ax — b||?

-0 h
It follows || Ax — b2 { — h()

= f(x) f(x)<p if xe A
>1 = h(x)=f

+
x)+1-0>p if xe A€

5/13

By integrality of A, b and x we have that ||Ax — b||? € Z.
Recalling the definitions:

f(x) =c'x+x"Fx h(x) = c"x + x" Fx + o/ Ax — b||?
= = = < i
It follows | Ax — b ? 0 = h(x)=Ff(x)+0="Ff(x)<p !fx eA
>1 = h(x)=f(x)+1-0>p if x e A€
x1 € A€ h(Xl) >p
14 x €A u 'p Ll+o

f(x1) f(x)=h(x2)

h(x) for x € A h(x) for x € A€

5/13

Final Reformulation

o expand the norm ||Ax — b||? as (Ax — b) " (Ax — b)
@ increase the dimension by one and fix first variable to 1
o computation of Q € R("D*(n+1) depending on A, b, ¢, F and p

N\

6/13

Final Reformulation

o expand the norm ||Ax — b||? as (Ax — b) " (Ax — b)
@ increase the dimension by one and fix first variable to 1
o computation of Q € R("D*(n+1) depending on A, b, ¢, F and p

= h* = min {)_(TQ)_(X € {_15 1}n+17 X = 1}

The adjacency matrix of the resulting graph is

0 if i = j
o) 2G40 (A b if i =0and#]
U7 2¢i—40(A.) b if j=0andj#i
4F;j + 4o (A.)) A if 1<i,j<nandi#j

6/13

Considerations on Parameters

Consideration

We transform a binary quadratic problem with equality constraints into a
max-cut instance. The weights of the edges depend on the parameters
A, b, c,, F and by the penalizer o.

7/13

Considerations on Parameters

Consideration

We transform a binary quadratic problem with equality constraints into a
max-cut instance. The weights of the edges depend on the parameters
A, b, c,, F and by the penalizer o.

The choice of the penalty parameter has significant influence on the
tractability of the problem.

We want to keep its value as small as possible!

7/13

Smallest penalty parameter

Upper and lower bounds

Considering the lower and the upper bounds

F=min{f(x): xe A°} and u* =max{f(x): xe A},

we can define the following parameters:

8/13

Smallest penalty parameter

Upper and lower bounds

Considering the lower and the upper bounds

F=min{f(x): xe A°} and u* =max{f(x): xe A},
we can define the following parameters:

p*=u* and o =u* /1" +e

8/13

Smallest penalty parameter

Upper and lower bounds

Considering the lower and the upper bounds
F=min{f(x): xe A°} and u* =max{f(x): xe A},
we can define the following parameters:

p*=u* and o =u* /1" +e

The penalty parameter c* = u* — {* + € is the smallest possible, such that
the assumptions of the main theorem hold.

8/13

Efficiently computable penalty parameter

Problem

Solving
F=min{f(x): xe A°} and u* =max{f(x): xe A},

is in general as difficult as solving our original problem.

9/13

Efficiently computable penalty parameter

Problem
Solving

F=min{f(x): xe A°} and u* =max{f(x): xe A},

is in general as difficult as solving our original problem.

Thus we want to derive some penalty parameter which
@ is relatively small and

@ can be computed quickly.

Given any pair of bounds (¢, u) such that ¢ < ¢* and u > u*.

Then it follows that the threshold p = u and the penalty parameter
0 = u — ¢ + € satisfy the assumptions of the main theorem.

9/13

Previous work

Bounds and parameters from Lasserre

As far as we know the only work in this direction was of Lasserre: given
20 A . T 1 XT
£(0) = min(max) {{F, X) + ¢ x: X >0,Xi=1;,

he derived as parameters p = max{|{],|d|} and 6 = 2j + 1.

10/13

Previous work

Bounds and parameters from Lasserre

As far as we know the only work in this direction was of Lasserre: given

X

£(d) = min(max) {<F, X)+c'x: {)1(;} >0,X; = 1},

he derived as parameters p = max{|{],|d|} and 6 = 2j + 1.

Our bounds and parameters

Let M = [b,—A] and Y = [)1(

|
—

X], we calculate the bounds

= max{ch +tr(XTF)| Y >0, diag(X) = e, MY = 0}
/' = min {ch +tr(XTF)| Y >0, diag(X) = e, Xe MET} :

where MET is the set of triangle and some 5-clique inequalities, i.e., cutting planes
which strengthen the relaxation.

Thusp'=u' and o’ = v — ¢ + e

v
10/13

Comparisons

From the previous definitions, it follows easily

/ /

p=p and 6>0.

11/13

Comparisons

From the previous definitions, it follows easily

/ /

p=p and 6>0.

Considerations

We considered thousands of instances (both randomly generated and from the
max k-cluster problem).

@ the penalty parameter ¢’ is in general 20% of &
@ computing o’ takes less than 2 minutes, while & less than 30 seconds

@ by using o’ almost 70% of the instances were solved within 1.5 hours,
while by using & less than 45%

Comparisons

From the previous definitions, it follows easily

/ /

p=p and 6>0.

Considerations

We considered thousands of instances (both randomly generated and from the
max k-cluster problem).

@ the penalty parameter ¢’ is in general 20% of &
@ computing o’ takes less than 2 minutes, while & less than 30 seconds

@ by using o’ almost 70% of the instances were solved within 1.5 hours,
while by using & less than 45%

These first computational results validated our intuitions, thus we choose ¢’ as
penalty parameter. We compare the solution of the max-cut instance (by using
BigMac) with the solution of the original problem (by using commercial solvers).

iyl

Results on Randomly Generated Instances

Randomly Generated Instances

We consider randomly generated instances: the parameters A, b, ¢ and F are random,
from different sets. We consider instances with 80 and 100 variables and up to 15
constraints.

—e— EXPEDIS
—+— CPLEX
—— SCIP
—— GUROBI
—— COUENNE

% of instances solved

time (h)

Figure: Performance profile of the different solvers on all the randomly generated 15/13

@ improve the bounds by using different relaxations
@ test on different problems
@ use some specific approach for detecting possible infeasibility

e find a way to penalize also some quadratic constraints

13/13

