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1. From Linear to Conic Programming



Linear Programming

Linear Optimization in standard form:

minimize ¢’ x

subjectto Ax=b
x > 0.

Pro:

Structure is explicit and simple.
® Data is simple: c, A, b.

Structure implies data-independent convexity.

Powerful duality theory including Farkas lemma.

Therefore, we have powerful algorithms and software.



Linear Programming @

Con:

® |t is linear only.

The world is nonlinear.



Nonlinear Programming

The classical nonlinear optimization problem:

minimize  f(x)
subject to  h(x)

g(x)

I/\ ||

Pro
® |t is very general.
Con:

® Structure is less explicit.

® How to specify the problem at all in software?
® How to compute gradients and Hessians if needed?
® How to exploit structure?

® Smoothness?

® Verifying convexity is NP-hard!



A fundamental question

Is there a class of nonlinear optimization problems that preserves
possibly many of the good properties of Linear Programming?
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Good partial orderings

Definition (Ben-Tal & Nemirovski, (2001))

A “good” partial ordering of R" is a vector relation that satisfies:
1. reflexivity
2. antisymmetry
3. transitivity
4. compatibility with linear operations

The coordinatewise ordering
x>y<<=x;>y;Vi=1,...,n

is an example, but not the only one!



Good partial orderings

® |f for some good partial ordering “>" we define
K:={aeR"|a*0},

then /C must be a pointed, convex cone:

l.a,d ek = a+ad ek
2.aeL,A>0 = Xaek
3.aeKkand —ae K = a=0

e Conversely, if IC is a non-empty pointed convex cone, then
X =k y <= x —y € K defines a good partial ordering.

The cone R} is also closed and has a non-empty interior.



(Mixed-Integer) Conic Programming

We thus consider problems of the form
minimize ¢’ x
subjectto Ax=b
x € K N(ZP x R™)

where K is a (closed) pointed convex cone (with non-empty
interior).

e (MI)LP is a special case!

e Typically, K =K1 x K2 x --+ x Kk is a product of
lower-dimensional cones.

® A conic building block K; can be thought of as encoding some
type of specific non-linearity.



The beauty of conic optimization

Separation of data and structure:

® Data: ¢, A and b.
® Structure: K.

® No issues with smoothness and differentiability.

Structural convexity.

Duality (almost...).
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2. Examples & Applications of cones



The conic wheel
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Quadratic cones

After the non-negative orthant R}, the quadratic-cone family is
arguably most prominent.

® the quadratic cone

)1/2

Q"={xeR" x> (G + - +x)"" = |xell2},

® the rotated quadratic cone

Al ={x eR"| 2x1x > x32 + -+ X,% = HX3;,,H%, x1,x2 > 0}.

Are equivalent in the sense that x € Q" <= T,x € Q7 with
1/vV2 1/V2 0
1/V2 -1/vV2 0
0 0

In—2



Quadratic cones in dimension 3
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Conic quadratic case study: least squares regression v

In least squares regression we use the penalty function

¢(r) = [Irll2.

In its simplest form, given observations y € R"” and features
X € R™9 it solves

min [ly — Xw/|>.

weRd

Start with a small and simple amount of reformulation:
minimize t
subject to  t > ||y — Xw||2
teR,weR?
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Conic quadratic case study: least squares regression v

In the conic framework this would be written as

minimize t

subjectto s=y — Xw
(t,S) c Qn+1
weRY.

We usually use the more compact notation

(t.y — Xw) € Q™.
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More conic quadratic modeling

® Second-order cone inequality:

c™x+d>|Ax+ bl <= (c"x+d,Ax+b)e Q™

® Squared Euclidean norm:

t> x5 <= (5,1/2,x) € QI

e Convex quadratic inequality:
t>(1/2)x"TQx = (t,1,FTx) e Qk+?

with Q = FTF, F ¢ R"™*k,

Any convex (MI)QCQP can be cast in conic form!



More conic quadratic modeling

® Square roots, convex hyperbolic function, some convex
negative rational powers...

e Convex positive rational power
t> x3/27 x>0:

If we impose

1

(s,t,%),(x,1/8,5) € Q2 <= 2st > x° 2x - 3 > 52,

it follows that
3/2

1
452t2-1x2x452 — tZZX3 — t>x
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The positive semidefinite cone

The positive semidefinite cone can be defined as a subspace of the
vector space R"("+1)/2

SMnt/2 = [x e R""D/2 | zTsmat(x)z > 0, Vz € R"},
with
X1 xz/\@ X,,/\@
x2/V2 Xnt1 e Xon1/V2

smat(x) :=

Xn/V2 Xon-1/V2 ... Xn(ni1)2
An equivalent definition via matrix variables:
X €St = XeS"and z' Xz > 0VzcR".
X is mapped to S"("1)/2 yia
svec(X) = (X11, V2Xo1, ..., V2Xp1, Xoo, V2X30, . .., Xon) T



SDP use-case: Nearest correlation matrix v

Let A € S"” and assume we want to find its nearest correlation
matrix

X*ECZZ{XESi’X,',':].VI':].,...,H},

X* = min ||A— X|r.
gpelgH | F

A conic formulation in vector space is given by

S T B
s B

minimize t

subject to X1 = Xp41 = Xon = ... = Xp(ny1)/2 = 1
(t,svec(A) — x) € Qn(nt1)/2+1
x e Sn(n+1)/2‘
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More semidefinite modeling

® SDP can come in handy in eigenvalue optimization, e.g., if
tl — X tsr}r 0,

then t is an upper bound on the largest eigenvalue of X.

® SDP-relaxations play a role in Quadratic Programming and in
Combinatorial Optimization:

X = xx" can be relaxed to X — xx" =sn 0.

® There are applications for Mixed-Integer SDP, see, e.g., Gally,
Pfetsch and Ulbrich (2018).



Back to the conic wheel

quadratic

cones

The three cones we have seen so far are so-called symmetric cones,
i.e., they are

1. homogeneous
2. self-dual



The exponential cone

The exponential cone is defined as the closure of the epigraph of
the perspective of the exponential function:

Kexp = cl{x € R3 | x1 > xpexp(x3/x2), xo > 0},
or more explicitly

Kep = {(x1,x2,x3) | x1 > x2exp(x3/x2), x2 > 0}

U

{(X1707X3) ‘ X1 Z 01X3 S 0}

The exponential cone is non-symmetric!



The exponential cone




Exponential cone use case: Geometric Programming v

Consider the very simple Geometric Program

minimize  x + y%3z
subject to /x4y 1 <1
X? y?Z > O

First note that e + ... + e* <1 can be modeled as
P
(uj,1,x;) € Kexp Vi=1,..., k and Zu,- <1,
i=1

and then substitute x = eP,y = e9,z =¢":

minimize t
subject to  (u1,1,p—t),(u2,1,03g+w —t) € Kesp, 1 + 2 <1
(V17 17p/2)7 (V27 17 _q) € ,Cexpa vi+ vy < 1



More exponential cone modeling

Logarithm:

logx >t <= (x,1,t) € Kegp.

Entropy:

—xlogx >t <= (1,x,t) € Kexp.

Relative entropy:

Xlog(X/.y) S t <~ (y,x,—t) € ICexp-

Softplus function:
log(1+€*) <t <= (u,1,x—t),(v,1,—t) € Keyp, u+v < 1.
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The power cone

The power cone is defined as
Py ={xeR"| Xféxz(l_a) > |Ix3:nll2, x1,x2 > 0},
for0 < a< 1.

One may also restrict to the three-dimensional power cone without
losing any modeling capabilities:

(X1y...,xn) € Py <= (x1,x2,2) € P5,(2,%3,...,Xn) € o1,

Also the power cone is non-symmetric!



The power cone
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Power cone modeling v

® Simple powers:

[t] < xP,x >0with0 < p<1l<=(x,1,t) € P§.
t > [x|? with p > 1 <= (t,1,x) € P3/".

Example: t > x3/2 x > 0 < (t,1,x) € 7732/3 (instead of
(s,t,x),(x,1/8,s) € Q3..)

® p-norms, geometric mean, ...
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How general is the conic wheel?

exponential

cone Continuous Optimization Folklore

“Almost all convex constraints which
arise in practice are representable using

these 5 cones.”

quadratic

cones

More evidence: Lubin et al. (2016) show that all convex instances
(333) in MINLPLIB2 are conic representable using only 4 of the

above cones.
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Verifying convexity

Is log(1/(1 + exp(—x))) < 0 a convex constraint?

From ask.cvxr.com:

o 14" Oct'18

| encountered a problem, which is was attached.
Is it a convex problem? (how prove?)

If it is not convex, how | convert it to a convex problem?

Verifying convexity can be hard!

Solution: Disciplined Convex Programming (DCP) by Grant, Boyd
and Ye (2006): only allow for modeling operations that preserve
convexity.
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Extremely Disciplined Convex Programming

We call modeling with the aforementioned 5 cones

Extremely Disciplined Convex Programming.

® More strict than DCP..

® .. but leading to guaranteed convexity and
conic-representability.

® Aiming at the development of efficient numerical algorithms.



Are there more cones?

For every convex function g(x) the set

K:=c{(y,s,x) |y =s-g(x/s)}
is a closed pointed convex cone. So

y 2 g(x) <= (y,1,x) e K.

But how de we handle X' computationally, and is it tractable?
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Do we need more cones?

Elog Archive

Logarithmic mean temperature difference
requires yet another cone?

The logarithmic mean temperature difference.

Infz/y)

ReeLMTD?(z,y) = ( . 2

can be extracted as a separately contributing T8 in the objective function. Cagpitalizing on the convexity
of this term on (z, ) £ R2 for all considered 3 = 0, this leads to better performance when solving the
otherwise nonconvex problem as argued in the paper.

A challenge to find the conic reformulation of this function was posed under the Oberwolfach Workshop
on Mixed-Integer Nonlinear Optimization (2019) and we accepted. Of course, this is trivial if no
restrictions are put on the set of cones as one may just define

K=c{(t,s,z,y) R :t = s RecLMTD"(z/s,y/5)} (3)
and call it a day. This cone is nonempty. closed and convex and hence obeys K = (K*)* as well as all

the usual properties of conic duality. Computationally, however, the cone is not particularly desirable and
we can do better with & bit of reformulation:

(4)

where | substitute in the first step, rewritea orw < 0 (both leads to the same) in
the second, and extract a power cone represemable suhexpresslon in the third. This means that the
representation problem of B ETepresgntation problem of

’C=Cl{ff‘3‘1}61’;'{ E: I -2 ;}
exp(z/s) —1

which, just like the quadra
of & univarite convex function;

er and exponential cones, is defined as the Epigraph of the perspective
is cone can be written in terms of the
others, or has potential for computationally efficient implementations itself, remains open. We invite
anyone interested in barrier functions and interior-point algorithms to take a crack at it.
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Do we need more cones?

The Extremely-DCP framework is very general, but does it have
limitations?

o A folkloristic saying is not a formal theorem.

® More cones may lead to less reformulation.

Coey, Kapelevich and Vielma (2020) introduce a framework for
Generic Conic Programming, treating more exotic cones.

In the literature, note the prominent appearance of
® the completely positive,
® the copositive

® and the doubly-non-negative cone.



Exotic cones

The infinity norm cone

Kfoo = {X c R" | X1 > ||X2:n||oo}

The relative entropy cone
d
Kentr = cl{(x,u,v) € R x R x RY | x > > " u;log(u;/vi)}
i=1

The spectral norm cone
Icspec(dl,dg) = {(X7X) eRx Rled2 ‘ X > UI(X)}

® Root-determinant cone, Log-determinant cone, Polynomial
weighted sum-of-squares cone, ...

X/d X di+d-
For example, (x, X) € Kopec(dy,dy) <= (XTI X/d2> € S¢te,



The extended conic wheel

Conic software:

* MOSEK: LP, QCP, SDP, Exp, Pow,
with MI support

e SeDuMi, CSDP, SDPA, SDPD,
SDPT3: SDP, QCP

 CPLEX, Gurobi, XPRESS:
(MI)-LP and -SOCP

® SCS: LP, QCP, SDP, Exp, Pow
e ECOS: QCP, Exp
e SCIP-SDP: MI-SDP

exponential

cone

quadratic |

cones

® Pajarito.jl: OA-framework for
MI, -QCP, -SDP, -Exp

® Hypatia.jl: Generic Conic
Programming

e Modeling: CVX, Yalmip, JuMP /%
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Lagrangian duality

Recall the nonlinear optimization problem

minimize  f(x)
subject to  h(x) =
g(x) =

The Lagrangian duality approach defines the Lagrange function
L(x, 11, A) = F(x) + T h(x) + ATg(x),
and the dual function

g(p, A) = inf L(x, 1, A).

If g(p, A) > —o0, we call (i, A) dual feasible.



LP is special...

... because the dual takes on an explicit form:
f(x) =c"x, h(x) = Ax — b, g(x) = —x
leads to the Lagrange function
L(x, 11, \) = ¢ x + puT (Ax — b) — AT x,
and the dual function is finite if (dual feasibility!)
ATp4+c—A=0and A >0.

Note that A > 0 guarantees —\"x < 0 (for primal feasible x).



Extending duality to Conic Programming v

In the conic framework

minimize ¢’ x

subjectto Ax—b=0
x € K,

we need dual variables X that satisfy
“AMx<0ovxeKk,
thus giving rise to the set
K*={yeR"|y"x>0VxcK}.

For any 0 # K, K* is a closed convex cone, and if K is a cone, we
call K* its dual cone!
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Conic dual problem

The conic dual takes on the (explicit!) form
maximize bTy
subject to —ATy+c—A=0
ek,
and the feasible set can more compactly be written as
c— ATy eK*orc>p- Aly.

Weak duality comes for free:

bTy = (AX)Ty =xT - ATy =xT. (c—XN)= c™x—A"x<cx
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Dual cones v

Self-duality: for £ € {R],Q",S"},

K*=K.

Kexp is not self-dual:

(Kexp)" =cl{x € R3 | x1 > —x3exp(x2/x3),x3 < 0}



Farkas lemma - the LP case :

b

a ARY) ={Ax | x >0}

a

as

(ARD) ={y | yTA<0}

Either Ax = b, x > 0 is feasible, or yTA<0,y"b > 0 is so.
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Farkas Lemma - the conic version

Let A(K) = {Ax | x € K}. The LP case translates almost
verbatim to the conic case:

Lemma (Géartner & Matousek (2011))

Let K be a closed convex cone. Exactly of of the following
statements is true:

1. b e A(K) (primal system is feasible).
2. —yTAe K*,bTy > 0 is feasible.
3. b¢ A(K) (primal system is infeasible), but b € cl (A(K)).

In the third alternative the primal system is only limit-feasible.



An ill-posed example :

w
minimize u
subjectto v=0 92
1
w=—
n b
(u,v,w) € QF
a1 "4

One can show that A(Q}) = (R>o x R) U {(0,0)}.

Thus b ¢ A(Q7) but b e cl(A(Q}))!
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Well-posed but infeasible - certified!

w
minimize u
. 1
subjectto v =—= a2
1
w=—
2 , b
(u,v,w) € Q7
a1 v

y =(—1,0)7 is a certificate of infeasibility:

1
yTb= 5 > 0and —yTA=(0,1,0) € (Q})* = Q3.

More generally, duality enables conic solvers to produce certificates
of optimality, primal or dual infeasibility.



Strong duality

In the LP case we have:

Theorem (LP strong duality)

If at least one of ¢" x* and b" y* is finite, then ¢ x* = b" y*.

In the conic case we still have strong duality under a regularity
assumption:

Theorem ((some version of ) Conic strong duality)

If there is a strictly feasible point (Ix € int(K) : Ax = b) and

c"x* is finite, then ¢ x* = b y*.

In practice, a positive duality gap indicates issues with the problem
formulation.
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4. Numerical solution methods



The continuous case: Interior Point Methods

Reduce a somehow constrained
optimization problem

min  c'x
Ax=b,xeX

to a linear equality constrained
optimization:

min t-c’x + F(x) < (0)
Ax=b

where F(x) is such that



Conic barriers

A crucial task is to find a barrier function for a given K.

In both theory and practice, self-concordance of a barrier has
proven a desirable property.

® For the quadratic cone Q":

Q(x) = —Iog(x12 —x22 —...—x,%)

® For the semidefinite cone Si:

S(X) = — log(det(x))

® For the relative entropy cone Keper:
d

d
E(X) = - (log(uy) + log(v)) — log(x — 3 u;log(u/vi))

i=1 i=1



Self-dual embedding

v

Several IPMs for Conic Programming use the homogeneous model
(or the self-dual embedding):

Ax —br =0
cr—ATy—A=0
Tx=b"y+Kk=0
xe, Ae K" 1,6k >0,
encapsulates different duality cases:
e If 7 >0, k=0 then %(x,y, A) is optimal,
Ax=br, ct—ATy=X c'x—bTy=0.
e |[f 7 =0, k > 0 then the problem is infeasible,
Ax=0, —-ATy=X c'x—bTy<o.

e |f 7 =0, k = 0 then the problem is ill-posed.
1



Symmetric vs. non-symmetric cones

IPMs for symmetric cones are more extensively studied and
mature.

® For symmetric cones, the so-called centrality condition is just
a perturbed KKT-system.

® For symmetric cones we have the Nesterov-Todd scaling

Wx = Wi\ =s,

® but not for non-symmetric cones:

Vx =V TA=s.

Implementing IPMs for non-symmetric cones is an active research
areal
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The Mixed-Integer case

Recall the Mixed-Integer Conic Programming problem:
minimize ¢’ x
subject to Ax =b
x € KN (2P x R™P)
Two (convex) Mixed-Integer Nonlinear Programming approaches
have been prominently translated to Mixed-Integer Conic
Programming:

® Non-linear Branch-and-Bound — Conic Branch-and-Bound.
¢ Outer approximation: a convex constraint g(x) < 0 can be
approximated by a gradient cut

g(2)+ V(%) (x— %) <0.

® In the conic case we have other ways of approximating the
feasible set.



Conic outer approximation

Exploit the polar cone £° = —K* (exploit structure!):

Clearly K = {x | a’x < 0 Ya € K°}, so any point a € K°
separates & ¢ K: a’ £ > 0.

If K ={x| g(x) <0}, then a = Vg(X) is a separator, see
Lubin (2017).

Otherwise, one can solve the maximal separation problem

max alx.

acke,|lal|2<1

This is the dual of the projection problem milrc1 Ix — X||2.
xe



Cone projections

For the symmetric cones, the projection problem can be solved
algebraically!



Cone projections

For the exponential and power cones, the projection problem is at
most a univariate root-finding problem, shown by Hien (2015) and
Friberg (2018).

X1
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Mixed-Integer Conic Programming as a research area

When developing (components of ) Mixed-Integer Conic
Programming solvers, we may:

® exploit the fact of dealing with a cone K:

® Deriving disjunctive cuts: Lodi, Tanneau, Vielma (2020).
® Conic outer approximation: Coey, Lubin, Vielma (2018).

o exploit the fact of dealing with a specific cone (limited
structure!):
® Cutting planes for Q": Andersen, Jensen (2013) and others.
® Primal heuristics for Q": Cay, Pdlik, Terlaky (2018).
® Disjunctive Programming techniques: Bernal (2019).



Disjunctive cuts

® |n the general convex case, Bonami
(2011) proposed to

1. solve NLP,
2. build OA,
3. solve Cut Generating LP

® |n the conic case, Lodi, Tanneau,
Vielma (2020)

1. solve Cut Generating Conic
Program

An application of conic duality!
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Disjunctive programming

When dealing with nonlinear disjunctive, or indicator constraints
z=1 = g(x) <0,

Ceria and Soares (1999) show that the perspective function
z - g(x/z) can be used for building strong continuous relaxations.

This is just another cone, maybe a well-known one:
e z=1 = (y,1,x) € Q% leads to (y, z,x) € Q3.
* z=1 = (y,1,x) € Kexp leads to (y,z,x) € Kexp.

There are no differentiability issues!



Mixed-Integer Conic Programming as a research area

\4

Operations Research
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“"Mixed-Integer Conic Programming is very immature yet, so
good improvements can be expected as theory and practice
develop.”
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