moseк

A gentle introduction to Continuous and Mixed-Integer Conic Programming

Università di Bologna

November 23th, 2020

Sven Wiese

WWW.mosek. com

1. From Linear to Conic Programming
2. Examples \& Applications of cones

- Symmetric cones
- Non-symmetric cones
- Yet more cones

3. Conic duality
4. Numerical solution methods

- The continuous case
- The mixed-integer case

1. From Linear to Conic Programming

Linear Programming

Linear Optimization in standard form:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

Pro:

- Structure is explicit and simple.
- Data is simple: c, A, b.
- Structure implies data-independent convexity.
- Powerful duality theory including Farkas lemma.

Therefore, we have powerful algorithms and software.

Linear Programming

Con:

- It is linear only.

Nonlinear Programming

The classical nonlinear optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & h(x)=0 \\
& g(x) \leq 0
\end{array}
$$

Pro

- It is very general.

Con:

- Structure is less explicit.
- How to specify the problem at all in software?
- How to compute gradients and Hessians if needed?
- How to exploit structure?
- Smoothness?
- Verifying convexity is NP-hard!

A fundamental question

Is there a class of nonlinear optimization problems that preserves possibly many of the good properties of Linear Programming?

Good partial orderings

Definition (Ben-Tal \& Nemirovski, (2001))

A "good" partial ordering of \mathbb{R}^{n} is a vector relation that satisfies:

1. reflexivity
2. antisymmetry
3. transitivity
4. compatibility with linear operations

The coordinatewise ordering

$$
x \geq y \Longleftrightarrow x_{i} \geq y_{i} \forall i=1, \ldots, n
$$

is an example, but not the only one!

Good partial orderings

- If for some good partial ordering " \succeq " we define

$$
\mathcal{K}:=\left\{a \in \mathbb{R}^{n} \mid a \succeq 0\right\},
$$

then \mathcal{K} must be a pointed, convex cone:

1. $a, a^{\prime} \in \mathcal{K} \Longrightarrow a+a^{\prime} \in \mathcal{K}$
2. $a \in \mathcal{K}, \lambda \geq 0 \Longrightarrow \lambda a \in \mathcal{K}$
3. $a \in \mathcal{K}$ and $-a \in \mathcal{K} \Longrightarrow a=0$

- Conversely, if \mathcal{K} is a non-empty pointed convex cone, then $x \succeq \mathcal{K} y: \Longleftrightarrow x-y \in \mathcal{K}$ defines a good partial ordering.

The cone \mathbb{R}_{+}^{n} is also closed and has a non-empty interior.

(Mixed-Integer) Conic Programming

We thus consider problems of the form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \in \mathcal{K} \cap\left(\mathbb{Z}^{p} \times \mathbb{R}^{n}\right)
\end{array}
$$

where \mathcal{K} is a (closed) pointed convex cone (with non-empty interior).

- (MI)LP is a special case!
- Typically, $\mathcal{K}=\mathcal{K}_{1} \times \mathcal{K}_{2} \times \cdots \times \mathcal{K}_{K}$ is a product of lower-dimensional cones.
- A conic building block \mathcal{K}_{i} can be thought of as encoding some type of specific non-linearity.

The beauty of conic optimization

- Separation of data and structure:
- Data: c, A and b.
- Structure: \mathcal{K}.
- No issues with smoothness and differentiability.
- Structural convexity.
- Duality (almost...).

References I

- A. Ben-Tal \& A. Nemirovski: Lectures on Modern Convex Optimization (2001).

2. Examples \& Applications of cones

The conic wheel

After the non-negative orthant \mathbb{R}_{+}^{n}, the quadratic-cone family is arguably most prominent.

- the quadratic cone

$$
\mathcal{Q}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{1} \geq\left(x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}=\left\|x_{2: n}\right\|_{2}\right\}
$$

- the rotated quadratic cone

$$
\mathcal{Q}_{r}^{n}=\left\{x \in \mathbb{R}^{n} \mid 2 x_{1} x_{2} \geq x_{3}^{2}+\cdots+x_{n}^{2}=\left\|x_{3: n}\right\|_{2}^{2}, x_{1}, x_{2} \geq 0\right\}
$$

Are equivalent in the sense that $x \in \mathcal{Q}^{n} \Longleftrightarrow T_{n} x \in \mathcal{Q}_{r}^{n}$ with

$$
\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
0 & 0 & I_{n-2}
\end{array}\right)
$$

Conic quadratic case study: least squares regression

In least squares regression we use the penalty function

$$
\phi(r)=\|r\|_{2} .
$$

In its simplest form, given observations $y \in \mathbb{R}^{n}$ and features $X \in \mathbb{R}^{n \times d}$, it solves

$$
\min _{w \in \mathbb{R}^{d}}\|y-X w\|_{2} .
$$

Start with a small and simple amount of reformulation:

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & t \geq\|y-X w\|_{2} \\
& t \in \mathbb{R}, w \in \mathbb{R}^{d}
\end{array}
$$

Conic quadratic case study: least squares regression

In the conic framework this would be written as

We usually use the more compact notation

$$
(t, y-X w) \in \mathcal{Q}^{n+1}
$$

More conic quadratic modeling

- Second-order cone inequality:

$$
c^{T} x+d \geq\|A x+b\|_{2} \quad \Longleftrightarrow \quad\left(c^{T} x+d, A x+b\right) \in \mathcal{Q}^{m+1}
$$

- Squared Euclidean norm:

$$
t \geq\|x\|_{2}^{2} \quad \Longleftrightarrow \quad(t, 1 / 2, x) \in \mathcal{Q}_{r}^{n+2}
$$

- Convex quadratic inequality:

$$
t \geq(1 / 2) x^{T} Q x \quad \Longleftrightarrow \quad\left(t, 1, F^{\top} x\right) \in \mathcal{Q}_{r}^{k+2}
$$

with $Q=F^{T} F, F \in \mathbb{R}^{n \times k}$.
Any convex (MI)QCQP can be cast in conic form!

More conic quadratic modeling

- Square roots, convex hyperbolic function, some convex negative rational powers...
- Convex positive rational power

$$
t \geq x^{3 / 2}, x \geq 0
$$

If we impose

$$
(s, t, x),(x, 1 / 8, s) \in \mathcal{Q}_{r}^{3} \Longleftrightarrow 2 s t \geq x^{2}, 2 x \cdot \frac{1}{8} \geq s^{2}
$$

it follows that

$$
4 s^{2} t^{2} \cdot \frac{1}{4} x \geq x^{4} s^{2} \Longrightarrow t^{2} \geq x^{3} \Longrightarrow t \geq x^{3 / 2}
$$

The positive semidefinite cone

The positive semidefinite cone can be defined as a subspace of the vector space $\mathbb{R}^{n(n+1) / 2}$

$$
\mathcal{S}^{n(n+1) / 2}:=\left\{x \in \mathbb{R}^{n(n+1) / 2} \mid z^{T} \operatorname{smat}(x) z \geq 0, \forall z \in \mathbb{R}^{n}\right\},
$$

with

$$
\boldsymbol{\operatorname { s m a t }}(x):=\left(\begin{array}{cccc}
x_{1} & x_{2} / \sqrt{2} & \ldots & x_{n} / \sqrt{2} \\
x_{2} / \sqrt{2} & x_{n+1} & \ldots & x_{2 n-1} / \sqrt{2} \\
\vdots & \vdots & & \vdots \\
x_{n} / \sqrt{2} & x_{2 n-1} / \sqrt{2} & \ldots & x_{n(n+1) / 2}
\end{array}\right)
$$

An equivalent definition via matrix variables:

$$
X \in \mathbb{S}_{+}^{n}: \Longleftrightarrow X \in \mathbb{S}^{n} \text { and } z^{T} X z \geq 0 \forall z \in \mathbb{R}^{n}
$$

X is mapped to $\mathcal{S}^{n(n+1) / 2}$ via

$$
\operatorname{svec}(X):=\left(X_{11}, \sqrt{2} X_{21}, \ldots, \sqrt{2} X_{n 1}, X_{22}, \sqrt{2} X_{32}, \ldots, X_{n n}\right)^{T}
$$

Let $A \in \mathbb{S}^{n}$ and assume we want to find its nearest correlation matrix

$$
X^{*} \in \mathcal{C}:=\left\{X \in \mathbb{S}_{+}^{n} \mid X_{i i}=1 \forall i=1, \ldots, n\right\},
$$

i.e.,

$$
X^{*}=\min _{X \in \mathcal{C}}\|A-X\|_{F}
$$

A conic formulation in vector space is given by

minimize t
subject to $\quad x_{1}=x_{n+1}=x_{2 n}=\ldots=x_{n(n+1) / 2}=1$

$$
\begin{aligned}
& (t, \operatorname{svec}(A)-x) \in \mathcal{Q}^{n(n+1) / 2+1} \\
& x \in \mathcal{S}^{n(n+1) / 2}
\end{aligned}
$$

More semidefinite modeling

- SDP can come in handy in eigenvalue optimization, e.g., if

$$
t I-X \succeq \mathbb{S}_{+}^{n} 0
$$

then t is an upper bound on the largest eigenvalue of X.

- SDP-relaxations play a role in Quadratic Programming and in Combinatorial Optimization:

$$
X=x x^{T} \text { can be relaxed to } X-x x^{T} \succeq_{\mathbb{S}_{+}^{n}} 0
$$

- There are applications for Mixed-Integer SDP, see, e.g., Gally, Pfetsch and Ulbrich (2018).

Back to the conic wheel

The three cones we have seen so far are so-called symmetric cones, i.e., they are

1. homogeneous
2. self-dual

The exponential cone

The exponential cone is defined as the closure of the epigraph of the perspective of the exponential function:

$$
\mathcal{K}_{\text {exp }}:=\operatorname{cl}\left\{x \in \mathbb{R}^{3} \mid x_{1} \geq x_{2} \exp \left(x_{3} / x_{2}\right), x_{2}>0\right\}
$$

or more explicitly

$$
\begin{gathered}
\mathcal{K}_{\text {exp }}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1} \geq x_{2} \exp \left(x_{3} / x_{2}\right), x_{2}>0\right\} \\
\bigcup^{\left\{\left(x_{1}, 0, x_{3}\right) \mid x_{1} \geq 0, x_{3} \leq 0\right\}}
\end{gathered}
$$

The exponential cone is non-symmetric!

The exponential cone

Exponential cone use case: Geometric Programming

Consider the very simple Geometric Program

$$
\begin{array}{ll}
\operatorname{minimize} & x+y^{0.3} z \\
\text { subject to } & \sqrt{x}+y^{-1} \leq 1 \\
& x, y, z>0
\end{array}
$$

First note that $e^{x_{1}}+\ldots+e^{x_{k}} \leq 1$ can be modeled as

$$
\left(u_{i}, 1, x_{i}\right) \in \mathcal{K}_{\exp } \forall i=1, \ldots, k \text { and } \sum_{i=1}^{k} u_{i} \leq 1
$$

and then substitute $x=e^{p}, y=e^{q}, z=e^{r}$:

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & \left(u_{1}, 1, p-t\right),\left(u_{2}, 1,0.3 q+w-t\right) \in \mathcal{K}_{\text {exp }}, u_{1}+u_{2} \leq 1 \\
& \left(v_{1}, 1, p / 2\right),\left(v_{2}, 1,-q\right) \in \mathcal{K}_{\text {exp }}, v_{1}+v_{2} \leq 1
\end{array}
$$

More exponential cone modeling

- Logarithm:

$$
\log x \geq t \quad \Longleftrightarrow \quad(x, 1, t) \in \mathcal{K}_{\text {exp }}
$$

- Entropy:

$$
-x \log x \geq t \quad \Longleftrightarrow \quad(1, x, t) \in \mathcal{K}_{\text {exp }}
$$

- Relative entropy:

$$
x \log (x / y) \leq t \quad \Longleftrightarrow \quad(y, x,-t) \in \mathcal{K}_{\text {exp }}
$$

- Softplus function:
$\log \left(1+e^{x}\right) \leq t \quad \Longleftrightarrow \quad(u, 1, x-t),(v, 1,-t) \in \mathcal{K}_{\text {exp }}, u+v \leq 1$.

The power cone

The power cone is defined as

$$
\mathcal{P}_{n}^{\alpha}=\left\{x \in \mathbb{R}^{n} \mid x_{1}^{\alpha} x_{2}^{(1-\alpha)} \geq\left\|x_{3: n}\right\|_{2}, x_{1}, x_{2} \geq 0\right\}
$$

for $0<\alpha<1$.

One may also restrict to the three-dimensional power cone without losing any modeling capabilities:

$$
\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{P}_{n}^{\alpha} \Longleftrightarrow\left(x_{1}, x_{2}, z\right) \in \mathcal{P}_{3}^{\alpha},\left(z, x_{3}, \ldots, x_{n}\right) \in \mathcal{Q}^{n-1}
$$

Also the power cone is non-symmetric!

The power cone

Power cone modeling

- Simple powers:

$$
\begin{gathered}
|t| \leq x^{p}, x \geq 0 \text { with } 0<p<1 \Longleftrightarrow(x, 1, t) \in \mathcal{P}_{3}^{p} . \\
t \geq|x|^{p} \text { with } p>1 \Longleftrightarrow(t, 1, x) \in \mathcal{P}_{3}^{1 / p} \text {. }
\end{gathered}
$$

Example: $t \geq x^{3 / 2}, x \geq 0 \Longleftrightarrow(t, 1, x) \in \mathcal{P}_{3}^{2 / 3}$ (instead of $\left.(s, t, x),(x, 1 / 8, s) \in \mathcal{Q}_{r}^{3} \ldots\right)$

- p-norms, geometric mean, ...

Continuous Optimization Folklore

"Almost all convex constraints which arise in practice are representable using these 5 cones."

More evidence: Lubin et al. (2016) show that all convex instances (333) in MINLPLIB2 are conic representable using only 4 of the above cones.

Verifying convexity

Is $\log (1 /(1+\exp (-x))) \leq 0$ a convex constraint?
From ask.cvxr.com:

I encountered a problem, which is was attached.
Is it a convex problem? (how prove?)
If it is not convex, how I convert it to a convex problem?

Verifying convexity can be hard!

Solution: Disciplined Convex Programming (DCP) by Grant, Boyd and Ye (2006): only allow for modeling operations that preserve convexity.

Extremely Disciplined Convex Programming

We call modeling with the aforementioned 5 cones

Extremely Disciplined Convex Programming.

- More strict than DCP..
- ... but leading to guaranteed convexity and conic-representability.
- Aiming at the development of efficient numerical algorithms.

Are there more cones?

For every convex function $g(x)$ the set

$$
\mathcal{K}:=\operatorname{cl}\{(y, s, x) \mid y \geq s \cdot g(x / s)\}
$$

is a closed pointed convex cone. So

$$
y \geq g(x) \Longleftrightarrow(y, 1, x) \in \mathcal{K}
$$

But how de we handle \mathcal{K} computationally, and is it tractable?

Do we need more cones?

Tuesday, June 4, 2019

Logarithmic mean temperature difference requires yet another cone?

The logarithmic mean temperature difference

can be extracted as a separately contributing term in the objective function. Capitalizing on the convexity of this term on $(x, y) \in \mathbb{R}^{2}$, for all considered $\beta \geq 0$, this leads to better performance when solving the otherwise nonconvex problem as argued in the paper.

A challenge to find the conic reformulation of this function was posed under the Oberwolfach Workshop on Mixed-Integer Nonlinear Optimization (2019) and we accepted. Of course, this is trivial if no restrictions are put on the set of cones as one may just define

$$
\begin{equation*}
\mathcal{K}=\operatorname{cl}\left\{(t, s, x, y) \in \mathbb{R}_{++}^{4}: t \geq s \cdot \operatorname{RecLMTD} D^{3}(x / s, y / s)\right\} \tag{3}
\end{equation*}
$$

and call it a day. This cone is nonempty, closed and convex and hence obeys $K=\left(K^{*}\right)^{*}$ as well as all the usual properties of conic duality. Computationally, however, the cone is not particularly desirable and we can do better with a bit of reformulation:

$$
\begin{equation*}
y \geq \frac{u}{\exp (u / s)-1}, \quad u=x-y, \quad s \geq t^{-1 / \beta} \tag{4}
\end{equation*}
$$

where I substitute in the first step, rewite assuming either $4>0$ or $u<0$ (both leads to the same) in the second, and extract a power cone representable subexpression in the third. This means that the representation problem of ReeLNTTD" have been reduced to the representation problem of

$$
\begin{equation*}
\mathcal{K}=\mathrm{cl}\left\{(t, s, x) \in \mathbb{R}_{+}^{2} \times \mathbb{R}_{++}: t \geq \frac{x}{\exp (x / s)-1}\right\} \tag{5}
\end{equation*}
$$

which, just like the quadratic, power and exponential cones, is defined as the epigraph of the perspective of a univarite convex function; in this case $\frac{x(x)-1}{\exp (x)}$. Whether this cone can be written in terms of the others, or has potential for computationally efficient implementations itself, remains open. We invite anyone interested in barrier functions and interior-point algorithms to take a crack at it.

- November (1)
- October (2)
- August (1)
- July (1)
* June (1)

Logarithmic mean temperature difference requires y.

- May (2)
- April (1)
- February (1)
- January (3)
- 2018 (20)
- 2017 (13)
- 2016 (9)
- 2015 (7)
- 2014 (29)
> 2013 (22)
- 2012 (13)
- 2011 (16)
- 2010 (2)

Subscribe To
\qquad
Comments v

Do we need more cones?

The Extremely-DCP framework is very general, but does it have limitations?

- A folkloristic saying is not a formal theorem.
- More cones may lead to less reformulation.

Coey, Kapelevich and Vielma (2020) introduce a framework for Generic Conic Programming, treating more exotic cones.

In the literature, note the prominent appearance of

- the completely positive,
- the copositive
- and the doubly-non-negative cone.
- The infinity norm cone

$$
\mathcal{K}_{\ell_{\infty}}=\left\{x \in \mathbb{R}^{n} \mid x_{1} \geq\left\|x_{2: n}\right\|_{\infty}\right\}
$$

- The relative entropy cone

$$
\mathcal{K}_{e n t r}=\operatorname{cl}\left\{(x, u, v) \in \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \mid x \geq \sum_{i=1}^{d} u_{i} \log \left(u_{i} / v_{i}\right)\right\}
$$

- The spectral norm cone

$$
\mathcal{K}_{\text {spec }\left(d_{1}, d_{2}\right)}=\left\{(x, X) \in \mathbb{R} \times \mathbb{R}^{d_{1} \times d_{2}} \mid x \geq \sigma_{1}(X)\right\}
$$

- Root-determinant cone, Log-determinant cone, Polynomial weighted sum-of-squares cone, ...
For example, $(x, X) \in \mathcal{K}_{s p e c}\left(d_{1}, d_{2}\right) \Longleftrightarrow\left(\begin{array}{cc}x I_{d_{1}} & X \\ X^{T} & x l_{d_{2}}\end{array}\right) \in \mathbb{S}_{+}^{d_{1}+d_{2}}$.
- MOSEK: LP, QCP, SDP, Exp, Pow, with MI support
- SeDuMi, CSDP, SDPA, SDPD, SDPT3: SDP, QCP
- CPLEX, Gurobi, XPRESS: (MI)-LP and -SOCP
- SCS: LP, QCP, SDP, Exp, Pow
- ECOS: QCP, Exp
- SCIP-SDP: MI-SDP
- Pajarito.jl: OA-framework for MI, -QCP, -SDP, -Exp
- Hypatia.jl: Generic Conic Programming
- Modeling: CVX, Yalmip, JuMP
- The MOSEK modeling cookbook (2020).

2018

- T. Gally, M. Pfetsch, S. Ulbrich: A Framework for Solving Mixed-Integer Semidefinite Programs (2018).
- M. Lubin and E. Yamangil and R. Bent, J. P. Vielma: Extended Formulations in Mixed-integer Convex Programming (2016).
- M. Grant, S. Boyd, Y. Ye: Disciplined Convex Programming (2006).
- C. Coey, L. Kapelevich, J. P. Vielma: Towards Practical Generic Conic Optimization (2020).

3. Conic duality

Lagrangian duality

Recall the nonlinear optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & h(x)=0 \\
& g(x) \leq 0
\end{array}
$$

The Lagrangian duality approach defines the Lagrange function

$$
L(x, \mu, \lambda)=f(x)+\mu^{T} h(x)+\lambda^{T} g(x)
$$

and the dual function

$$
g(\mu, \lambda)=\inf _{x} L(x, \mu, \lambda) .
$$

If $g(\mu, \lambda)>-\infty$, we call (μ, λ) dual feasible.

LP is special...

... because the dual takes on an explicit form:

$$
f(x)=c^{T} x, h(x)=A x-b, g(x)=-x
$$

leads to the Lagrange function

$$
L(x, \mu, \lambda)=c^{T} x+\mu^{T}(A x-b)-\lambda^{T} x
$$

and the dual function is finite if (dual feasibility!)

$$
A^{T} \mu+c-\lambda=0 \text { and } \lambda \geq 0
$$

Note that $\lambda \geq 0$ guarantees $-\lambda^{T} x \leq 0$ (for primal feasible x).

In the conic framework

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x-b=0 \\
& x \in \mathcal{K}
\end{array}
$$

we need dual variables λ that satisfy

$$
-\lambda^{T} x \leq 0 \forall x \in \mathcal{K}
$$

thus giving rise to the set

$$
\mathcal{K}^{*}=\left\{y \in \mathbb{R}^{n} \mid y^{\top} x \geq 0 \forall x \in \mathcal{K}\right\}
$$

For any $\emptyset \neq \mathcal{K}, \mathcal{K}^{*}$ is a closed convex cone, and if \mathcal{K} is a cone, we call \mathcal{K}^{*} its dual cone!

Conic dual problem

The conic dual takes on the (explicit!) form

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} y \\
\text { subject to } & -A^{T} y+c-\lambda=0 \\
& \lambda \in \mathcal{K}^{*}
\end{array}
$$

and the feasible set can more compactly be written as

$$
c-A^{T} y \in \mathcal{K}^{*} \text { or } c \geq_{\mathcal{K}^{*}} A^{T} y
$$

Weak duality comes for free:

$$
b^{T} y=(A x)^{T} y=x^{T} \cdot A^{T} y=x^{T} \cdot(c-\lambda)=c^{T} x-\lambda^{T} x \leq c^{T} x
$$

Dual cones

Self-duality: for $\mathcal{K} \in\left\{\mathbb{R}_{+}^{n}, \mathcal{Q}^{n}, \mathbb{S}_{+}^{n}\right\}$,

$$
\mathcal{K}^{*}=\mathcal{K}
$$

$\mathcal{K}_{\text {exp }}$ is not self-dual:
$\left(\mathcal{K}_{\text {exp }}\right)^{*}=\operatorname{cl}\left\{x \in \mathbb{R}^{3} \mid x_{1} \geq-x_{3} \exp \left(x_{2} / x_{3}\right), x_{3}<0\right\}$

Either $A x=b, x \geq 0$ is feasible, or $y^{T} A \leq 0, y^{T} b>0$ is so.

Let $\mathcal{A}(\mathcal{K})=\{A x \mid x \in \mathcal{K}\}$. The LP case translates almost verbatim to the conic case:

Lemma (Gärtner \& Matoušek (2011))

Let \mathcal{K} be a closed convex cone. Exactly of of the following statements is true:

> 1. $b \in \mathcal{A}(\mathcal{K})$ (primal system is feasible).
> 2. $-y^{T} A \in \mathcal{K}^{*}, b^{T} y>0$ is feasible.
3. $b \notin \mathcal{A}(\mathcal{K})$ (primal system is infeasible), but $b \in \operatorname{cl}(\mathcal{A}(\mathcal{K}))$.

In the third alternative the primal system is only limit-feasible.

An ill-posed example

minimize u
subject to $v=0$
$w=\frac{1}{2}$
$(u, v, w) \in \mathcal{Q}_{r}^{n}$

One can show that $\mathcal{A}\left(\mathcal{Q}_{r}^{n}\right)=\left(\mathbb{R}_{>0} \times \mathbb{R}\right) \cup\{(0,0)\}$.
Thus $b \notin \mathcal{A}\left(\mathcal{Q}_{r}^{n}\right)$ but $b \in \operatorname{cl}\left(\mathcal{A}\left(\mathcal{Q}_{r}^{n}\right)\right)$!

Well-posed but infeasible - certified!

$\operatorname{minimize} \quad u$
subject to $\begin{aligned} v & =-\frac{1}{2} \\ w & =\frac{1}{2}\end{aligned}$
$(u, v, w) \in \mathcal{Q}_{r}^{n}$

$y=(-1,0)^{T}$ is a certificate of infeasibility:

$$
y^{T} b=\frac{1}{2}>0 \text { and }-y^{T} A=(0,1,0) \in\left(\mathcal{Q}_{3}^{n}\right)^{*}=\mathcal{Q}_{3}^{n} .
$$

More generally, duality enables conic solvers to produce certificates of optimality, primal or dual infeasibility.

Strong duality

In the LP case we have:

Theorem (LP strong duality)

If at least one of $c^{\top} x^{*}$ and $b^{T} y^{*}$ is finite, then $c^{\top} x^{*}=b^{T} y^{*}$.

In the conic case we still have strong duality under a regularity assumption:

Theorem ((some version of) Conic strong duality)
If there is a strictly feasible point $(\exists x \in \operatorname{int}(\mathcal{K}): A x=b)$ and $c^{\top} x^{*}$ is finite, then $c^{\top} x^{*}=b^{T} y^{*}$.

In practice, a positive duality gap indicates issues with the problem formulation.

- B. Gärtner, J Matoušek: Approximation algorithms and semidefinite programming (2012).
- S. Boyd \& L. Vandenberghe: Convex Optimization (2013).

4. Numerical solution methods

The continuous case: Interior Point Methods

Reduce a somehow constrained optimization problem

$$
\min _{\Delta_{x}=h \in \mathcal{X}} c^{t} x
$$

to a linear equality constrained optimization:

$$
\min _{A x=b} t \cdot c^{T} x+F(x)
$$

where $F(x)$ is such that

$$
F(x) \xrightarrow[x \rightarrow \delta \mathcal{X}]{ } \infty
$$

A crucial task is to find a barrier function for a given \mathcal{K}.
In both theory and practice, self-concordance of a barrier has proven a desirable property.

- For the quadratic cone \mathcal{Q}^{n} :

$$
Q(x)=-\log \left(x_{1}^{2}-x_{2}^{2}-\ldots-x_{n}^{2}\right)
$$

- For the semidefinite cone \mathbb{S}_{+}^{n} :

$$
S(X)=-\log (\operatorname{det}(x))
$$

- For the relative entropy cone $\mathcal{K}_{\text {entr }}$:

$$
E(X)=-\sum_{i=1}^{d}\left(\log \left(u_{i}\right)+\log \left(v_{i}\right)\right)-\log \left(x-\sum_{i=1}^{d} u_{i} \log \left(u_{i} / v_{i}\right)\right)
$$

Self-dual embedding

Several IPMs for Conic Programming use the homogeneous model (or the self-dual embedding):

$$
\begin{gathered}
A x-b \tau=0 \\
c \tau-A^{T} y-\lambda=0 \\
c^{T} x-b^{T} y+\kappa=0 \\
x \in \mathcal{K}, \lambda \in \mathcal{K}^{*}, \tau, \kappa \geq 0
\end{gathered}
$$

encapsulates different duality cases:

- If $\tau>0, \kappa=0$ then $\frac{1}{\tau}(x, y, \lambda)$ is optimal,

$$
A x=b \tau, \quad c \tau-A^{T} y=\lambda, \quad c^{T} x-b^{T} y=0
$$

- If $\tau=0, \kappa>0$ then the problem is infeasible,

$$
A x=0, \quad-A^{T} y=\lambda, \quad c^{T} x-b^{T} y<0
$$

- If $\tau=0, \kappa=0$ then the problem is ill-posed.

Symmetric vs. non-symmetric cones

IPMs for symmetric cones are more extensively studied and mature.

- For symmetric cones, the so-called centrality condition is just a perturbed KKT-system.
- For symmetric cones we have the Nesterov-Todd scaling

$$
W x=W^{-1} \lambda=s
$$

- but not for non-symmetric cones:

$$
V x=V^{-T} \lambda=s
$$

Implementing IPMs for non-symmetric cones is an active research area!

- Y. Nesterov and M. J. Todd: Primal-dual interior-point methods for self-scaled cones (1998).
- S. H. Schmieta and F. Alizadeh: Extension of primal-dual interior point methods to symmetric cones (2003).
- A. Skajaa and Y. Ye: A homogeneous interior-point algorithm for nonsymmetric convex conic optimization (2015).
- S. A. Serrano: Algorithms for unsymmetric cone optimization and an implementation for problems with the exponential cone (2015).
- D. Papp and S. Yıldız: On A homogeneous interior-point algorithm for non-symmetric convex conic optimization (2017).
- D. Papp and S. Yıldız: Sum-of-squares optimization without semidefinite programming (2019).
- J. Dahl and E Andersen: A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization (2019).

The Mixed-Integer case

Recall the Mixed-Integer Conic Programming problem:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \in \mathcal{K} \cap\left(\mathbb{Z}^{p} \times \mathbb{R}^{n-p}\right)
\end{array}
$$

Two (convex) Mixed-Integer Nonlinear Programming approaches have been prominently translated to Mixed-Integer Conic Programming:

- Non-linear Branch-and-Bound \rightarrow Conic Branch-and-Bound.
- Outer approximation: a convex constraint $g(x) \leq 0$ can be approximated by a gradient cut

$$
g(\hat{x})+\nabla g(\hat{x})^{T}(x-\hat{x}) \leq 0 .
$$

- In the conic case we have other ways of approximating the feasible set.

Exploit the polar cone $\mathcal{K}^{\circ}=-\mathcal{K}^{*}$ (exploit structure!):

- Clearly $\mathcal{K}=\left\{x \mid a^{T} x \leq 0 \forall a \in \mathcal{K}^{\circ}\right\}$, so any point $a \in \mathcal{K}^{\circ}$ separates $\hat{x} \notin \mathcal{K}: a^{T} \hat{x}>0$.
- If $\mathcal{K}=\{x \mid g(x) \leq 0\}$, then $a=\nabla g(\hat{x})$ is a separator, see Lubin (2017).
- Otherwise, one can solve the maximal separation problem

$$
\max _{a \in \mathcal{K}^{\circ},\|a\|_{2} \leq 1} a^{T} \hat{x} .
$$

- This is the dual of the projection problem $\min _{x \in \mathcal{K}}\|x-\hat{x}\|_{2}$.

Cone projections

For the symmetric cones, the projection problem can be solved algebraically!

Cone projections

For the exponential and power cones, the projection problem is at most a univariate root-finding problem, shown by Hien (2015) and Friberg (2018).

Mixed-Integer Conic Programming as a research area

When developing (components of) Mixed-Integer Conic Programming solvers, we may:

- exploit the fact of dealing with a cone \mathcal{K} :
- Deriving disjunctive cuts: Lodi, Tanneau, Vielma (2020).
- Conic outer approximation: Coey, Lubin, Vielma (2018).
- exploit the fact of dealing with a specific cone (limited structure!):
- Cutting planes for \mathcal{Q}^{n} : Andersen, Jensen (2013) and others.
- Primal heuristics for \mathcal{Q}^{n} : Çay, Pólik, Terlaky (2018).
- Disjunctive Programming techniques: Bernal (2019).

Disjunctive cuts

- In the general convex case, Bonami (2011) proposed to

1. solve NLP,
2. build $O A$,
3. solve Cut Generating LP

- In the conic case, Lodi, Tanneau, Vielma (2020)

1. solve Cut Generating Conic Program

An application of conic duality!

Disjunctive programming

When dealing with nonlinear disjunctive, or indicator constraints

$$
z=1 \Longrightarrow g(x) \leq 0
$$

Ceria and Soares (1999) show that the perspective function $z \cdot g(x / z)$ can be used for building strong continuous relaxations.

This is just another cone, maybe a well-known one:

- $z=1 \Longrightarrow(y, 1, x) \in \mathbb{Q}_{r}^{3}$ leads to $(y, z, x) \in \mathbb{Q}_{r}^{3}$.
- $z=1 \Longrightarrow(y, 1, x) \in \mathcal{K}_{\text {exp }}$ leads to $(y, z, x) \in \mathcal{K}_{\text {exp }}$.

There are no differentiability issues!

Mixed-Integer Conic Programming as a research area

$=$ Stack Exchange Q Search on Operatione Research.

```
Q P O Log in Signu
```


Operations Research Beta

Home
Questions
Tags
Users
Unanswered

How much can we expect to increase the speed of mixed integer
Ask Question programming in the next 10 years?
Asked 15 days ago Active 9 days ago Viewed 579 times
mixed-nteger-programmira Denchmark
share improve this question folow

Featured on Meta

\square A big thank you, Tim Post

- "Ouestion closed" notfications experiment results and graduation
a huge impact, but I personally am skeptical and am not aware of a real breaktirough result there More cores and more paralielization are also not going to help, except maybe from improvements in compilers and programming languages, such as micro-threading and the like. From all information I have, quantum computing is many, many years away from being reliable and accurate enough to matter forlinebra heavy applications, if it ever gets there, so 1 don't think it will matter in your 10 year timeframe. The best bet is improvements from theoretical results that are successfully transferred into working code. In the past that was what made solvers faster, the last big innovation there, symmetry handling through orbital branching, was such a deeply mathematical resulf appliect in a cleverway edvertain instances
"Mixed-Integer Conic Programming is very immature yet, so good improvements can be expected as theory and practice develop."
- S. Ceria and J. Soares: Convex programming for disjunctive convex optimization (1999).
- P. Bonami: Lift-and-Project Cuts for Mixed Integer Convex Programs (2011).
- K. Andersen and A. Jensen: Intersection Cuts for Mixed Integer Conic Quadratic Sets (2013).
- P. Belotti, J. Góez, I. Pólik, T. Ralphs and T. Terlaky: On Families of Quadratic Surfaces Having Fixed Intersections with Two Hyperplanes (2013).
- F. Kılınç-Karzan and S. Yıldız: Two-Term Disjunctions on the Second-Order Cone (2015).
- A. Lodi, M. Tanneau and J. P. Vielma: Disjunctive cuts in Mixed-Integer Conic Optimization (2020).
- L. T. K. Hien: Differential properties of Euclidean projection onto power cone (2015).
- H. Friberg: Projection onto the exponential cone: a univariate root-finding problem (2018).
- M. Lubin: Mixed-integer convex optimization: outer approximation algorithms and modeling power (2017).
- C. Coey, M Lubin and J.P. Vielma: Outer Approximation With Conic Certificates For Mixed-Integer Convex Problems (2018).
- S. Çay, I. Pólik and T. Terlaky: The first heuristic specifically for mixed-integer second-order cone optimization (2018).
- D. Bernal: Easily Solvable Convex Mixed-Integer Nonlinear Programs Derived from Generalized Disjunctive Programming using Cones (AIChE Annual Meeting, 2019)

