

A gentle introduction to Continuous and Mixed-Integer Conic Programming

Università di Bologna November 23th, 2020

Sven Wiese

www.mosek.com

Overview

- 1. From Linear to Conic Programming
- 2. Examples & Applications of cones
 - Symmetric cones
 - Non-symmetric cones
 - Yet more cones
- 3. Conic duality
- 4. Numerical solution methods
 - The continuous case
 - The mixed-integer case

1. From Linear to Conic Programming

Linear Programming

Linear Optimization in standard form:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$.

Pro:

- Structure is explicit and simple.
- Data is simple: c, A, b.
- Structure implies data-independent convexity.
- Powerful duality theory including Farkas lemma.

Therefore, we have powerful algorithms and software.

Linear Programming

Con:

• It is linear only.

The world is nonlinear.

Nonlinear Programming

The classical nonlinear optimization problem:

minimize
$$f(x)$$

subject to $h(x) = 0$
 $g(x) \le 0$.

Pro

It is very general.

Con:

- Structure is less explicit.
 - How to specify the problem at all in software?
 - How to compute gradients and Hessians if needed?
 - How to exploit structure?
- Smoothness?
- Verifying convexity is NP-hard!

A fundamental question

Is there a class of nonlinear optimization problems that preserves possibly many of the good properties of Linear Programming?

Good partial orderings

Definition (Ben-Tal & Nemirovski, (2001))

- A "good" partial ordering of \mathbb{R}^n is a vector relation that satisfies:
 - 1. reflexivity
 - 2. antisymmetry
 - 3. transitivity
 - 4. compatibility with linear operations

The coordinatewise ordering

$$x \geq y \iff x_i \geq y_i \ \forall i = 1, \ldots, n$$

is an example, but not the only one!

Good partial orderings

ullet If for some good partial ordering " \succeq " we define

$$\mathcal{K}:=\{a\in\mathbb{R}^n\mid a\succeq 0\},$$

then K must be a pointed, convex cone:

- 1. $a, a' \in \mathcal{K} \implies a + a' \in \mathcal{K}$
- $2. \ a \in \mathcal{K}, \lambda \geq 0 \implies \lambda a \in \mathcal{K}$
- 3. $a \in \mathcal{K}$ and $-a \in \mathcal{K} \implies a = 0$
- Conversely, if \mathcal{K} is a non-empty pointed convex cone, then $x \succeq_{\mathcal{K}} y :\iff x y \in \mathcal{K}$ defines a good partial ordering.

The cone \mathbb{R}^n_+ is also closed and has a non-empty interior.

(Mixed-Integer) Conic Programming

We thus consider problems of the form

minimize
$$c^T x$$

subject to $Ax = b$
 $x \in \mathcal{K} \cap (\mathbb{Z}^p \times \mathbb{R}^n)$

where \mathcal{K} is a (closed) pointed convex cone (with non-empty interior).

- (MI)LP is a special case!
- Typically, $\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_2 \times \cdots \times \mathcal{K}_K$ is a product of lower-dimensional cones.
- A conic building block K_i can be thought of as encoding some type of specific non-linearity.

The beauty of conic optimization

- Separation of data and structure:
 - Data: c, A and b.
 - Structure: K.
- No issues with smoothness and differentiability.
- Structural convexity.
- Duality (almost...).

References I

• A. Ben-Tal & A. Nemirovski: *Lectures on Modern Convex Optimization* (2001).

2. Examples & Applications of cones

The conic wheel

Quadratic cones

After the non-negative orthant \mathbb{R}^n_+ , the quadratic-cone family is arguably most prominent.

• the quadratic cone

$$Q^{n} = \{x \in \mathbb{R}^{n} \mid x_{1} \geq (x_{2}^{2} + \dots + x_{n}^{2})^{1/2} = \|x_{2:n}\|_{2}\},\$$

the rotated quadratic cone

$$\mathcal{Q}_r^n = \{x \in \mathbb{R}^n \mid 2x_1x_2 \geq x_3^2 + \dots + x_n^2 = \|x_{3:n}\|_2^2, \, x_1, x_2 \geq 0\}.$$

Are equivalent in the sense that $x \in \mathcal{Q}^n \iff T_n x \in \mathcal{Q}_r^n$ with

$$\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & I_{n-2} \end{pmatrix}.$$

Quadratic cones in dimension 3

Conic quadratic case study: least squares regression

In least squares regression we use the penalty function

$$\phi(r)=\|r\|_2.$$

In its simplest form, given observations $y \in \mathbb{R}^n$ and features $X \in \mathbb{R}^{n \times d}$, it solves

$$\min_{w \in \mathbb{R}^d} \|y - Xw\|_2.$$

Start with a small and simple amount of reformulation:

minimize
$$t$$
 subject to $t \ge \|y - Xw\|_2$ $t \in \mathbb{R}, w \in \mathbb{R}^d$

Conic quadratic case study: least squares regression

In the conic framework this would be written as

-0 90 -0 95 -1 05 -1 10 -1 15

minimize
$$t$$
 subject to $s = y - Xw$ $(t,s) \in \mathcal{Q}^{n+1}$ $w \in \mathbb{R}^d$.

We usually use the more compact notation

$$(t, y - Xw) \in \mathcal{Q}^{n+1}$$
.

More conic quadratic modeling

Second-order cone inequality:

$$c^T x + d \ge ||Ax + b||_2 \iff (c^T x + d, Ax + b) \in \mathcal{Q}^{m+1}.$$

• Squared Euclidean norm:

$$t > ||x||_2^2 \iff (t, 1/2, x) \in \mathcal{Q}_r^{n+2}.$$

Convex quadratic inequality:

$$t \ge (1/2)x^T Qx \iff (t, 1, F^T x) \in \mathcal{Q}_r^{k+2}$$

with $Q = F^T F$, $F \in \mathbb{R}^{n \times k}$.

Any convex (MI)QCQP can be cast in conic form!

More conic quadratic modeling

- Square roots, convex hyperbolic function, some convex negative rational powers...
- Convex positive rational power

$$t \ge x^{3/2}, \ x \ge 0$$
:

If we impose

$$(s,t,x),(x,1/8,s)\in\mathcal{Q}_r^3\Longleftrightarrow 2st\geq x^2,2x\cdot\frac{1}{8}\geq s^2,$$

it follows that

$$4s^2t^2 \cdot \frac{1}{4}x \ge x^4s^2 \implies t^2 \ge x^3 \implies t \ge x^{3/2}.$$

The positive semidefinite cone

The positive semidefinite cone can be defined as a subspace of the vector space $\mathbb{R}^{n(n+1)/2}$

$$\mathcal{S}^{n(n+1)/2} := \{ x \in \mathbb{R}^{n(n+1)/2} \mid z^T \mathbf{smat}(x) z \ge 0, \ \forall z \in \mathbb{R}^n \},$$
 with

$$\mathbf{smat}(x) := \begin{pmatrix} x_1 & x_2/\sqrt{2} & \dots & x_n/\sqrt{2} \\ x_2/\sqrt{2} & x_{n+1} & \dots & x_{2n-1}/\sqrt{2} \\ \vdots & \vdots & & \vdots \\ x_n/\sqrt{2} & x_{2n-1}/\sqrt{2} & \dots & x_{n(n+1)/2} \end{pmatrix}.$$

An equivalent definition via matrix variables:

$$X \in \mathbb{S}^n_+ : \iff X \in \mathbb{S}^n \text{ and } z^T X z \ge 0 \ \forall z \in \mathbb{R}^n.$$

X is mapped to $S^{n(n+1)/2}$ via

$$svec(X) := (X_{11}, \sqrt{2}X_{21}, \dots, \sqrt{2}X_{n1}, X_{22}, \sqrt{2}X_{32}, \dots, X_{nn})^T.$$

SDP use-case: Nearest correlation matrix

Let $A \in \mathbb{S}^n$ and assume we want to find its nearest correlation matrix

$$X^* \in \mathcal{C} := \{ X \in \mathbb{S}^n_+ \mid X_{ii} = 1 \ \forall i = 1, \dots, n \},$$

i.e.,

$$X^* = \min_{X \in \mathcal{C}} \|A - X\|_F.$$

A conic formulation in vector space is given by

```
minimize t subject to x_1 = x_{n+1} = x_{2n} = \ldots = x_{n(n+1)/2} = 1 (t, \mathbf{svec}(A) - x) \in \mathcal{Q}^{n(n+1)/2+1} x \in \mathcal{S}^{n(n+1)/2}.
```

More semidefinite modeling

• SDP can come in handy in eigenvalue optimization, e.g., if

$$tI - X \succeq_{\mathbb{S}^n_+} 0$$
,

then t is an upper bound on the largest eigenvalue of X.

 SDP-relaxations play a role in Quadratic Programming and in Combinatorial Optimization:

$$X = xx^T$$
 can be relaxed to $X - xx^T \succeq_{\mathbb{S}^n_+} 0$.

• There are applications for Mixed-Integer SDP, see, e.g., *Gally, Pfetsch and Ulbrich* (2018).

Back to the conic wheel

The three cones we have seen so far are so-called symmetric cones, i.e., they are

- 1. homogeneous
- 2. self-dual

The exponential cone

The exponential cone is defined as the closure of the epigraph of the perspective of the exponential function:

$$\mathcal{K}_{exp} := \operatorname{cl}\{x \in \mathbb{R}^3 \mid x_1 \ge x_2 \exp(x_3/x_2), \ x_2 > 0\},$$

or more explicitly

$$\mathcal{K}_{exp} = \begin{cases} (x_1, x_2, x_3) \mid x_1 \ge x_2 \exp(x_3/x_2), \ x_2 > 0 \} \\ \bigcup \\ \{(x_1, 0, x_3) \mid x_1 \ge 0, x_3 \le 0 \}. \end{cases}$$

The exponential cone is non-symmetric!

The exponential cone

Exponential cone use case: Geometric Programming

Consider the very simple Geometric Program

minimize
$$x + y^{0.3}z$$

subject to $\sqrt{x} + y^{-1} \le 1$
 $x, y, z > 0$

First note that $e^{x_1} + \ldots + e^{x_k} \le 1$ can be modeled as

$$(u_i,1,x_i)\in\mathcal{K}_{exp}\ \forall i=1,\ldots,k$$
 and $\sum_{i=1}^{\kappa}u_i\leq 1,$

and then substitute $x = e^p$, $y = e^q$, $z = e^r$:

minimize
$$t$$
 subject to $(u_1, 1, p - t), (u_2, 1, 0.3q + w - t) \in \mathcal{K}_{exp}, u_1 + u_2 \leq 1$ $(v_1, 1, p/2), (v_2, 1, -q) \in \mathcal{K}_{exp}, v_1 + v_2 \leq 1$

More exponential cone modeling

Logarithm:

$$\log x \ge t \iff (x, 1, t) \in \mathcal{K}_{exp}.$$

• Entropy:

$$-x \log x \ge t \iff (1, x, t) \in \mathcal{K}_{exp}.$$

• Relative entropy:

$$x \log(x/y) \le t \iff (y, x, -t) \in \mathcal{K}_{exp}.$$

• Softplus function:

$$\log(1+e^x) \le t \quad \Longleftrightarrow \quad (u,1,x-t), (v,1,-t) \in \mathcal{K}_{\exp}, \ u+v \le 1.$$

The power cone

The power cone is defined as

$$\mathcal{P}_n^{\alpha} = \{ x \in \mathbb{R}^n \mid x_1^{\alpha} x_2^{(1-\alpha)} \ge \|x_{3:n}\|_2, \ x_1, x_2 \ge 0 \},$$

for $0 < \alpha < 1$.

One may also restrict to the three-dimensional power cone without losing any modeling capabilities:

$$(x_1,\ldots,x_n)\in\mathcal{P}_n^\alpha\Longleftrightarrow(x_1,x_2,z)\in\mathcal{P}_3^\alpha,(z,x_3,\ldots,x_n)\in\mathcal{Q}^{n-1}.$$

Also the power cone is non-symmetric!

The power cone

Power cone modeling

Simple powers:

$$|t| \le x^p, x \ge 0 \text{ with } 0$$

$$t \ge |x|^p$$
 with $p > 1 \iff (t, 1, x) \in \mathcal{P}_3^{1/p}$.

Example:
$$t \ge x^{3/2}, x \ge 0 \iff (t, 1, x) \in \mathcal{P}_3^{2/3}$$
 (instead of $(s, t, x), (x, 1/8, s) \in \mathcal{Q}_r^3...$)

• p-norms, geometric mean, ...

How general is the conic wheel?

Continuous Optimization Folklore

"Almost all convex constraints which arise in practice are representable using these 5 cones."

More evidence: Lubin et al. (2016) show that all convex instances (333) in MINLPLIB2 are conic representable using only 4 of the above cones.

Verifying convexity

1 / Oct '18

Is $\log(1/(1 + \exp(-x))) \le 0$ a convex constraint?

From ask.cvxr.com:

I encountered a problem, which is was attached.

Is it a convex problem? (how prove?)

If it is not convex, how I convert it to a convex problem?

Verifying convexity can be hard!

Solution: Disciplined Convex Programming (DCP) by *Grant, Boyd and Ye* (2006): only allow for modeling operations that preserve convexity.

Extremely Disciplined Convex Programming

We call modeling with the aforementioned 5 cones

Extremely Disciplined Convex Programming.

- More strict than DCP..
- ... but leading to guaranteed convexity and conic-representability.
- Aiming at the development of efficient numerical algorithms.

Are there more cones?

For every convex function g(x) the set

$$\mathcal{K} := \operatorname{cl}\{(y, s, x) \mid y \ge s \cdot g(x/s)\}\$$

is a closed pointed convex cone. So

$$y \ge g(x) \Longleftrightarrow (y, 1, x) \in \mathcal{K}.$$

But how de we handle ${\mathcal K}$ computationally, and is it tractable?

Do we need more cones?

Tuesday, June 4, 2019

Logarithmic mean temperature difference requires yet another cone?

The logarithmic mean temperature difference

$$(RecLMTD^{\beta}(x,y) = \left(\frac{\ln(x/y)}{x-y}\right)^{\beta}, \qquad (2)$$

can be extracted as a separately contributing term in the objective function. Capitalizing on the convexity of this term on $(x,y) \in \mathbb{R}^2_+$, for all considered $\beta \geq 0$, this leads to better performance when solving the otherwise nonconvex problem as argued in the paper.

A challenge to find the conic reformulation of this function was posed under the Oberwolfach Workshop on Mixed-Integer Nonlinear Optimization (2019) and we accepted. Of course, this is trivial if no restrictions are put on the set of cones as one may just define

$$K = \text{cl}\{(t, s, x, y) \in \mathbb{R}^4_{++} : t \geq s \cdot RecLMTD^{\beta}(x/s, y/s)\}$$
 (3)

and call it a day. This cone is nonempty, closed and convex and hence obeys $K=(K^*)^*$ as well as all the usual properties of conic duality. Computationally, however, the cone is not particularly desirable and we can do better with a bit of reformulation:

$$y \ge \frac{u}{\exp(u/s)-1}$$
, $u = x - y$, $s \ge t^{-1/\beta}$, (4)

where I substitute in the first step, rewrite assuming either u > 0 or u < 0 (both leads to the same) in the second, and extract a power cone representable subexpression in the third. This means that the representation problem of $B_{ceLM}TD^{-1}$ have been reduced to the representation problem of

$$\mathcal{K} = \operatorname{cl}\left\{(t, s, x) \in \mathbb{R}_{+}^{2} \times \mathbb{R}_{++} : t \geq \frac{x}{\exp(x/s) - 1}\right\},\tag{5}$$

which, just like the quadratic, power and exponential cones, is defined as the epigraph of the perspective of a univarite convex function; in this case $\frac{1}{\exp(x)-1}$. Whether this cone can be written in terms of the others, or has potential for computationally efficient implementations itself, remains open. We invite anyone interested in barrier functions and interior-point algorithms to take a crack at it.

Posted by HFriberg at 11:21 AM

Blog Archive

▶ 2020 (16)

▼ 2019 (15)

December (2)

November (1)

October (2)

▶ August (1)
▶ July (1)

▼ June(1)

Logarithmic mean temperature difference requires y...

May (2)
April (1)

► February (1)

► January (3)

≥ 2018 (20)

≥ 2017 (13)

► 2016 (9) ► 2015 (7)

≥ 2014 (29)

► 2013 (22) ► 2012 (13)

► 2011 (16) ► 2010 (2)

Subscribe To

Do we need more cones?

The Extremely-DCP framework is very general, but does it have limitations?

- A folkloristic saying is not a formal theorem.
- More cones may lead to less reformulation.

Coey, Kapelevich and Vielma (2020) introduce a framework for Generic Conic Programming, treating more exotic cones.

In the literature, note the prominent appearance of

- the completely positive,
- the copositive
- and the doubly-non-negative cone.

Exotic cones

The infinity norm cone

$$\mathcal{K}_{\ell_{\infty}} = \{ x \in \mathbb{R}^n \mid x_1 \ge ||x_{2:n}||_{\infty} \}$$

• The relative entropy cone

$$\mathcal{K}_{entr} = \operatorname{cl}\{(x, u, v) \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d \mid x \geq \sum_{i=1}^d u_i \log(u_i/v_i)\}$$

• The spectral norm cone

$$\mathcal{K}_{spec(d_1,d_2)} = \{(x,X) \in \mathbb{R} \times \mathbb{R}^{d_1 \times d_2} \mid x \geq \sigma_1(X)\}$$

 Root-determinant cone, Log-determinant cone, Polynomial weighted sum-of-squares cone, ...

For example,
$$(x,X) \in \mathcal{K}_{spec(d_1,d_2)} \Longleftrightarrow \begin{pmatrix} xI_{d_1} & X \\ X^T & xI_{d_2} \end{pmatrix} \in \mathbb{S}^{d_1+d_2}_+.$$

The extended conic wheel

Conic software:

- MOSEK: LP, QCP, SDP, Exp, Pow, with MI support
- SeDuMi, CSDP, SDPA, SDPD, SDPT3: SDP, QCP
- CPLEX, Gurobi, XPRESS: (MI)-LP and -SOCP
- SCS: LP, QCP, SDP, Exp, Pow
- ECOS: QCP, Exp
- SCIP-SDP: MI-SDP
- Pajarito.jl: OA-framework for MI, -QCP, -SDP, -Exp
- Hypatia.jl: Generic Conic Programming
 - Modeling: CVX, Yalmip, JuMP

References II

• The MOSEK modeling cookbook (2020).

- T. Gally, M. Pfetsch, S. Ulbrich: A Framework for Solving Mixed-Integer Semidefinite Programs (2018).
- M. Lubin and E. Yamangil and R. Bent, J. P. Vielma: *Extended Formulations in Mixed-integer Convex Programming* (2016).
- M. Grant, S. Boyd, Y. Ye: Disciplined Convex Programming (2006).
- C. Coey, L. Kapelevich, J. P. Vielma: Towards Practical Generic Conic Optimization (2020).

3. Conic duality

Lagrangian duality

Recall the nonlinear optimization problem

minimize
$$f(x)$$

subject to $h(x) = 0$
 $g(x) \le 0$.

The Lagrangian duality approach defines the Lagrange function

$$L(x, \mu, \lambda) = f(x) + \mu^{T} h(x) + \lambda^{T} g(x),$$

and the dual function

$$g(\mu, \lambda) = \inf_{x} L(x, \mu, \lambda).$$

If $g(\mu, \lambda) > -\infty$, we call (μ, λ) dual feasible.

LP is special...

... because the dual takes on an explicit form:

$$f(x) = c^T x$$
, $h(x) = Ax - b$, $g(x) = -x$

leads to the Lagrange function

$$L(x, \mu, \lambda) = c^{T}x + \mu^{T}(Ax - b) - \lambda^{T}x,$$

and the dual function is finite if (dual feasibility!)

$$A^T \mu + c - \lambda = 0$$
 and $\lambda \ge 0$.

Note that $\lambda \geq 0$ guarantees $-\lambda^T x \leq 0$ (for primal feasible x).

Extending duality to Conic Programming

In the conic framework

minimize
$$c^T x$$

subject to $Ax - b = 0$
 $x \in \mathcal{K}$,

we need dual variables λ that satisfy

$$-\lambda^T x \leq 0 \ \forall x \in \mathcal{K},$$

thus giving rise to the set

$$\mathcal{K}^* = \{ y \in \mathbb{R}^n \mid y^T x \ge 0 \ \forall x \in \mathcal{K} \}.$$

For any $\emptyset \neq \mathcal{K}$, \mathcal{K}^* is a closed convex cone, and if \mathcal{K} is a cone, we call \mathcal{K}^* its *dual cone*!

Conic dual problem

The conic dual takes on the (explicit!) form

maximize
$$b^T y$$

subject to $-A^T y + c - \lambda = 0$
 $\lambda \in \mathcal{K}^*,$

and the feasible set can more compactly be written as

$$c - A^T y \in \mathcal{K}^* \text{ or } c \geq_{\mathcal{K}^*} A^T y.$$

Weak duality comes for free:

$$b^T y = (Ax)^T y = x^T \cdot A^T y = x^T \cdot (c - \lambda) = c^T x - \lambda^T x \le c^T x.$$

Dual cones

Self-duality: for $\mathcal{K} \in \{\mathbb{R}^n_+, \mathcal{Q}^n, \mathbb{S}^n_+\},$

$$\mathcal{K}^* = \mathcal{K}$$
.

 \mathcal{K}_{exp} is not self-dual:

$$(\mathcal{K}_{exp})^* = \operatorname{cl}\{x \in \mathbb{R}^3 \mid x_1 \ge -x_3 \exp(x_2/x_3), x_3 < 0\}$$

Farkas lemma - the LP case

Either $Ax = b, x \ge 0$ is feasible, or $y^T A \le 0, y^T b > 0$ is so.

Farkas Lemma - the conic version

Let $A(K) = \{Ax \mid x \in K\}$. The LP case translates almost verbatim to the conic case:

Lemma (Gärtner & Matoušek (2011))

Let K be a closed convex cone. Exactly of of the following statements is true:

- 1. $b \in \mathcal{A}(\mathcal{K})$ (primal system is feasible).
- 2. $-y^T A \in \mathcal{K}^*, b^T y > 0$ is feasible.
- 3. $b \notin \mathcal{A}(\mathcal{K})$ (primal system is infeasible), but $b \in cl(\mathcal{A}(\mathcal{K}))$.

In the third alternative the primal system is only limit-feasible.

An ill-posed example

One can show that $\mathcal{A}(\mathcal{Q}_r^n) = (\mathbb{R}_{>0} \times \mathbb{R}) \cup \{(0,0)\}.$

Thus
$$b \notin \mathcal{A}(\mathcal{Q}_r^n)$$
 but $b \in \operatorname{cl}(\mathcal{A}(\mathcal{Q}_r^n))!$

Well-posed but infeasible - certified!

$$y = (-1,0)^T$$
 is a certificate of infeasibility:

$$y^T b = \frac{1}{2} > 0 \text{ and } -y^T A = (0, 1, 0) \in (\mathcal{Q}_3^n)^* = \mathcal{Q}_3^n.$$

More generally, duality enables conic solvers to produce certificates of optimality, primal or dual infeasibility.

Strong duality

In the LP case we have:

Theorem (LP strong duality)

If at least one of c^Tx^* and b^Ty^* is finite, then $c^Tx^* = b^Ty^*$.

In the conic case we still have strong duality under a regularity assumption:

Theorem ((some version of) Conic strong duality)

If there is a strictly feasible point $(\exists x \in int(\mathcal{K}) : Ax = b)$ and c^Tx^* is finite, then $c^Tx^* = b^Ty^*$.

In practice, a positive duality gap indicates issues with the problem formulation.

References III

- B. Gärtner, J Matoušek: Approximation algorithms and semidefinite programming (2012).
- S. Boyd & L. Vandenberghe: Convex Optimization (2013).

4. Numerical solution methods

The continuous case: Interior Point Methods

Reduce a somehow constrained optimization problem

$$\min_{Ax=b,x\in\mathcal{X}}c^tx$$

to a linear equality constrained optimization:

$$\min_{Ax=b} t \cdot c^T x + F(x)$$

where F(x) is such that

$$F(x) \xrightarrow[x \to \delta \mathcal{X}]{} \infty.$$

Conic barriers

A crucial task is to find a barrier function for a given \mathcal{K} .

In both theory and practice, *self-concordance* of a barrier has proven a desirable property.

• For the quadratic cone Q^n :

$$Q(x) = -\log(x_1^2 - x_2^2 - \dots - x_n^2)$$

• For the semidefinite cone \mathbb{S}^n_{\perp} :

$$S(X) = -\log(\det(x))$$

• For the relative entropy cone \mathcal{K}_{entr} :

$$E(X) = -\sum_{i=1}^{d} (\log(u_i) + \log(v_i)) - \log(x - \sum_{i=1}^{d} u_i \log(u_i/v_i))$$

Self-dual embedding

Several IPMs for Conic Programming use the homogeneous model (or the self-dual embedding):

$$Ax - b\tau = 0$$

$$c\tau - A^{T}y - \lambda = 0$$

$$c^{T}x - b^{T}y + \kappa = 0$$

$$x \in \mathcal{K}, \ \lambda \in \mathcal{K}^{*}, \ \tau, \kappa \ge 0,$$

encapsulates different duality cases:

• If $\tau > 0$, $\kappa = 0$ then $\frac{1}{\tau}(x, y, \lambda)$ is optimal,

$$Ax = b\tau$$
, $c\tau - A^Ty = \lambda$, $c^Tx - b^Ty = 0$.

• If $\tau = 0$, $\kappa > 0$ then the problem is infeasible,

$$Ax = 0$$
, $-A^Ty = \lambda$, $c^Tx - b^Ty < 0$.

• If $\tau = 0$, $\kappa = 0$ then the problem is ill-posed.

Symmetric vs. non-symmetric cones

IPMs for symmetric cones are more extensively studied and mature.

- For symmetric cones, the so-called centrality condition is just a perturbed KKT-system.
- For symmetric cones we have the Nesterov-Todd scaling

$$Wx = W^{-1}\lambda = s$$
,

but not for non-symmetric cones:

$$Vx = V^{-T}\lambda = s.$$

Implementing IPMs for non-symmetric cones is an active research area!

References IV a

- Y. Nesterov and M. J. Todd: Primal-dual interior-point methods for self-scaled cones (1998).
- S. H. Schmieta and F. Alizadeh: Extension of primal-dual interior point methods to symmetric cones (2003).
- A. Skajaa and Y. Ye: A homogeneous interior-point algorithm for nonsymmetric convex conic optimization (2015).
- S. A. Serrano: Algorithms for unsymmetric cone optimization and an implementation for problems with the exponential cone (2015).
- D. Papp and S. Yıldız: On A homogeneous interior-point algorithm for non-symmetric convex conic optimization (2017).
- D. Papp and S. Yıldız: Sum-of-squares optimization without semidefinite programming (2019).
- J. Dahl and E Andersen: A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization (2019).

The Mixed-Integer case

Recall the Mixed-Integer Conic Programming problem:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \in \mathcal{K} \cap (\mathbb{Z}^p \times \mathbb{R}^{n-p})$

Two (convex) Mixed-Integer Nonlinear Programming approaches have been prominently translated to Mixed-Integer Conic Programming:

- $\bullet \ \, \mathsf{Non\text{-}linear} \,\, \mathsf{Branch\text{-}and\text{-}Bound} \,\, \to \, \mathsf{Conic} \,\, \mathsf{Branch\text{-}and\text{-}Bound}.$
- Outer approximation: a convex constraint $g(x) \le 0$ can be approximated by a gradient cut

$$g(\hat{x}) + \nabla g(\hat{x})^T (x - \hat{x}) \leq 0.$$

 In the conic case we have other ways of approximating the feasible set.

Conic outer approximation

Exploit the polar cone $K^{\circ} = -K^*$ (exploit structure!):

- Clearly $\mathcal{K} = \{x \mid a^T x \leq 0 \ \forall a \in \mathcal{K}^{\circ} \}$, so any point $a \in \mathcal{K}^{\circ}$ separates $\hat{x} \notin \mathcal{K}$: $a^T \hat{x} > 0$.
- If $K = \{x \mid g(x) \le 0\}$, then $a = \nabla g(\hat{x})$ is a separator, see Lubin (2017).
- Otherwise, one can solve the maximal separation problem

$$\max_{a \in \mathcal{K}^{\circ}, \|a\|_{2} \leq 1} a^{T} \hat{x}.$$

• This is the dual of the projection problem $\min_{x \in \mathcal{K}} \|x - \hat{x}\|_2$.

Cone projections

For the symmetric cones, the projection problem can be solved algebraically!

Cone projections

For the exponential and power cones, the projection problem is at most a univariate root-finding problem, shown by *Hien* (2015) and *Friberg* (2018).

Mixed-Integer Conic Programming as a research area

When developing (components of) Mixed-Integer Conic Programming solvers, we may:

- exploit the fact of dealing with a cone \mathcal{K} :
 - Deriving disjunctive cuts: Lodi, Tanneau, Vielma (2020).
 - Conic outer approximation: Coey, Lubin, Vielma (2018).
- exploit the fact of dealing with a specific cone (limited structure!):
 - Cutting planes for Q^n : Andersen, Jensen (2013) and others.
 - Primal heuristics for Q^n : Çay, Pólik, Terlaky (2018).
 - Disjunctive Programming techniques: Bernal (2019).

Disjunctive cuts

- In the general convex case, *Bonami* (2011) proposed to
 - 1. solve NLP,
 - 2. build OA,
 - 3. solve Cut Generating LP
- In the conic case, Lodi, Tanneau, Vielma (2020)
 - solve Cut Generating Conic Program

An application of conic duality!

Disjunctive programming

When dealing with nonlinear disjunctive, or indicator constraints

$$z=1 \implies g(x) \leq 0,$$

Ceria and Soares (1999) show that the perspective function $z \cdot g(x/z)$ can be used for building strong continuous relaxations.

This is just another cone, maybe a well-known one:

- $z = 1 \implies (y, 1, x) \in \mathbb{Q}^3_r$ leads to $(y, z, x) \in \mathbb{Q}^3_r$.
- $z = 1 \implies (y, 1, x) \in \mathcal{K}_{exp}$ leads to $(y, z, x) \in \mathcal{K}_{exp}$.

There are no differentiability issues!

Mixed-Integer Conic Programming as a research area

"Mixed-Integer Conic Programming is very immature yet, so good improvements can be expected as theory and practice develop."

References IV b

- S. Ceria and J. Soares: Convex programming for disjunctive convex optimization (1999).
- P. Bonami: Lift-and-Project Cuts for Mixed Integer Convex Programs (2011).
- K. Andersen and A. Jensen: Intersection Cuts for Mixed Integer Conic Quadratic Sets (2013).
- P. Belotti, J. Góez, I. Pólik, T. Ralphs and T. Terlaky: On Families of Quadratic Surfaces Having Fixed Intersections with Two Hyperplanes (2013).
- F. Kılınç-Karzan and S. Yıldız: Two-Term Disjunctions on the Second-Order Cone (2015).
- A. Lodi, M. Tanneau and J. P. Vielma: Disjunctive cuts in Mixed-Integer Conic Optimization (2020).

References IV c

- L. T. K. Hien: Differential properties of Euclidean projection onto power cone (2015).
- H. Friberg: *Projection onto the exponential cone: a univariate root-finding problem* (2018).
- M. Lubin: Mixed-integer convex optimization: outer approximation algorithms and modeling power (2017).
- C. Coey, M Lubin and J.P. Vielma: Outer Approximation With Conic Certificates For Mixed-Integer Convex Problems (2018).
- S. Çay, I. Pólik and T. Terlaky: The first heuristic specifically for mixed-integer second-order cone optimization (2018).
- D. Bernal: Easily Solvable Convex Mixed-Integer Nonlinear Programs Derived from Generalized Disjunctive Programming using Cones (AIChE Annual Meeting, 2019)