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1. From Linear to Conic Programming



Linear Programming

Linear Optimization in standard form:

minimize cT x
subject to Ax = b

x ≥ 0.

Pro:

• Structure is explicit and simple.

• Data is simple: c,A, b.

• Structure implies data-independent convexity.

• Powerful duality theory including Farkas lemma.

Therefore, we have powerful algorithms and software.
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Linear Programming

Con:

• It is linear only.
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Nonlinear Programming

The classical nonlinear optimization problem:

minimize f (x)
subject to h(x) = 0

g(x) ≤ 0.

Pro

• It is very general.

Con:
• Structure is less explicit.

• How to specify the problem at all in software?
• How to compute gradients and Hessians if needed?
• How to exploit structure?

• Smoothness?

• Verifying convexity is NP-hard!
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A fundamental question

Is there a class of nonlinear optimization problems that preserves
possibly many of the good properties of Linear Programming?
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Good partial orderings

Definition (Ben-Tal & Nemirovski, (2001))

A “good” partial ordering of Rn is a vector relation that satisfies:

1. reflexivity

2. antisymmetry

3. transitivity

4. compatibility with linear operations

The coordinatewise ordering

x ≥ y ⇐⇒ xi ≥ yi ∀i = 1, . . . , n

is an example, but not the only one!
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Good partial orderings

• If for some good partial ordering “�” we define

K := {a ∈ Rn | a � 0},

then K must be a pointed, convex cone:

1. a, a′ ∈ K =⇒ a + a′ ∈ K
2. a ∈ K, λ ≥ 0 =⇒ λa ∈ K
3. a ∈ K and −a ∈ K =⇒ a = 0

• Conversely, if K is a non-empty pointed convex cone, then
x �K y :⇐⇒ x − y ∈ K defines a good partial ordering.

The cone Rn
+ is also closed and has a non-empty interior.
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(Mixed-Integer) Conic Programming

We thus consider problems of the form

minimize cT x
subject to Ax = b

x

where K is a (closed) pointed convex cone (with non-empty
interior).

• (MI)LP is a special case!

• Typically, K = K1 ×K2 × · · · × KK is a product of
lower-dimensional cones.

• A conic building block Ki can be thought of as encoding some
type of specific non-linearity.

≥ 0∈ Rn
+K ∩ (Zp × Rn)
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The beauty of conic optimization

• Separation of data and structure:
• Data: c , A and b.
• Structure: K.

• No issues with smoothness and differentiability.

• Structural convexity.

• Duality (almost...).
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References I

• A. Ben-Tal & A. Nemirovski: Lectures on Modern Convex
Optimization (2001).
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2. Examples & Applications of cones



The conic wheel

K

LP

cone
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Quadratic cones

After the non-negative orthant Rn
+, the quadratic-cone family is

arguably most prominent.

• the quadratic cone

Qn = {x ∈ Rn | x1 ≥
(
x22 + · · ·+ x2n

)1/2
= ‖x2:n‖2},

• the rotated quadratic cone

Qn
r = {x ∈ Rn | 2x1x2 ≥ x23 + · · ·+ x2n = ‖x3:n‖22, x1, x2 ≥ 0}.

Are equivalent in the sense that x ∈ Qn ⇐⇒ Tnx ∈ Qn
r with1/

√
2 1/

√
2 0

1/
√

2 −1/
√

2 0
0 0 In−2

 .
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Quadratic cones in dimension 3

x2

x3

x1

x2

x3

x1
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Conic quadratic case study: least squares regression

In least squares regression we use the penalty function

φ(r) = ‖r‖2.

In its simplest form, given observations y ∈ Rn and features
X ∈ Rn×d , it solves

min
w∈Rd

‖y − Xw‖2.

Start with a small and simple amount of reformulation:

minimize t
subject to t ≥ ‖y − Xw‖2

t ∈ R,w ∈ Rd
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Conic quadratic case study: least squares regression

In the conic framework this would be written as

minimize t
subject to s = y − Xw

(t, s) ∈ Qn+1

w ∈ Rd .

We usually use the more compact notation

(t, y − Xw) ∈ Qn+1.
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More conic quadratic modeling

• Second-order cone inequality:

cT x + d ≥ ‖Ax + b‖2 ⇐⇒ (cT x + d ,Ax + b) ∈ Qm+1.

• Squared Euclidean norm:

t ≥ ‖x‖22 ⇐⇒ (t, 1/2, x) ∈ Qn+2
r .

• Convex quadratic inequality:

t ≥ (1/2)xTQx ⇐⇒ (t, 1,FT x) ∈ Qk+2
r

with Q = FTF , F ∈ Rn×k .

Any convex (MI)QCQP can be cast in conic form!
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More conic quadratic modeling

• Square roots, convex hyperbolic function, some convex
negative rational powers...

• Convex positive rational power

t ≥ x3/2, x ≥ 0 :

If we impose

(s, t, x), (x , 1/8, s) ∈ Q3
r ⇐⇒ 2st ≥ x2, 2x · 1

8
≥ s2,

it follows that

4s2t2 · 1

4
x ≥ x4s2 =⇒ t2 ≥ x3 =⇒ t ≥ x3/2.
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The positive semidefinite cone

The positive semidefinite cone can be defined as a subspace of the
vector space Rn(n+1)/2

Sn(n+1)/2 := {x ∈ Rn(n+1)/2 | zT smat(x)z ≥ 0, ∀z ∈ Rn},

with

smat(x) :=


x1 x2/

√
2 . . . xn/

√
2

x2/
√

2 xn+1 . . . x2n−1/
√

2
...

...
...

xn/
√

2 x2n−1/
√

2 . . . xn(n+1)/2

 .

An equivalent definition via matrix variables:

X ∈ Sn+ :⇐⇒ X ∈ Sn and zTXz ≥ 0 ∀z ∈ Rn.

X is mapped to Sn(n+1)/2 via

svec(X ) := (X11,
√

2X21, . . . ,
√

2Xn1,X22,
√

2X32, . . . ,Xnn)T .
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SDP use-case: Nearest correlation matrix

Let A ∈ Sn and assume we want to find its nearest correlation
matrix

X ∗ ∈ C := {X ∈ Sn+ | Xii = 1 ∀i = 1, . . . , n},

i.e.,
X ∗ = min

X∈C
‖A− X‖F .

A conic formulation in vector space is given by

minimize t
subject to x1 = xn+1 = x2n = . . . = xn(n+1)/2 = 1

(t, svec(A)− x) ∈ Qn(n+1)/2+1

x ∈ Sn(n+1)/2.
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More semidefinite modeling

• SDP can come in handy in eigenvalue optimization, e.g., if

tI − X �Sn+ 0,

then t is an upper bound on the largest eigenvalue of X .

• SDP-relaxations play a role in Quadratic Programming and in
Combinatorial Optimization:

X = xxT can be relaxed to X − xxT �Sn+ 0.

• There are applications for Mixed-Integer SDP, see, e.g., Gally,
Pfetsch and Ulbrich (2018).
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Back to the conic wheel

K

LP

cone

quadratic

cones

SDP

LP

cone

quadratic

cones

SDP

The three cones we have seen so far are so-called symmetric cones,
i.e., they are

1. homogeneous

2. self-dual
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The exponential cone

The exponential cone is defined as the closure of the epigraph of
the perspective of the exponential function:

Kexp := cl{x ∈ R3 | x1 ≥ x2 exp(x3/x2), x2 > 0},

or more explicitly

Kexp = {(x1, x2, x3) | x1 ≥ x2 exp(x3/x2), x2 > 0}⋃
{(x1, 0, x3) | x1 ≥ 0, x3 ≤ 0}.

The exponential cone is non-symmetric!
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The exponential cone

x2

x3

x1
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Exponential cone use case: Geometric Programming

Consider the very simple Geometric Program

minimize x + y0.3z

subject to
√
x + y−1 ≤ 1

x , y , z > 0

First note that ex1 + . . .+ exk ≤ 1 can be modeled as

(ui , 1, xi ) ∈ Kexp ∀i = 1, . . . , k and
k∑

i=1

ui ≤ 1,

and then substitute x = ep, y = eq, z = er :

minimize t
subject to (u1, 1, p − t), (u2, 1, 0.3q + w − t) ∈ Kexp, u1 + u2 ≤ 1

(v1, 1, p/2), (v2, 1,−q) ∈ Kexp, v1 + v2 ≤ 1
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More exponential cone modeling

• Logarithm:

log x ≥ t ⇐⇒ (x , 1, t) ∈ Kexp.

• Entropy:

−x log x ≥ t ⇐⇒ (1, x , t) ∈ Kexp.

• Relative entropy:

x log(x/y) ≤ t ⇐⇒ (y , x ,−t) ∈ Kexp.

• Softplus function:

log(1+ex) ≤ t ⇐⇒ (u, 1, x−t), (v , 1,−t) ∈ Kexp, u+v ≤ 1.
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The power cone

The power cone is defined as

Pαn = {x ∈ Rn | xα1 x
(1−α)
2 ≥ ‖x3:n‖2, x1, x2 ≥ 0},

for 0 < α < 1.

One may also restrict to the three-dimensional power cone without
losing any modeling capabilities:

(x1, . . . , xn) ∈ Pαn ⇐⇒ (x1, x2, z) ∈ Pα3 , (z , x3, . . . , xn) ∈ Qn−1.

Also the power cone is non-symmetric!
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The power cone

x2

x3

x1

α = 0.6 x2

x3

x1

α = 0.8
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Power cone modeling

• Simple powers:

|t| ≤ xp, x ≥ 0 with 0 < p < 1⇐⇒ (x , 1, t) ∈ Pp
3 .

t ≥ |x |p with p > 1⇐⇒ (t, 1, x) ∈ P1/p
3 .

Example: t ≥ x3/2, x ≥ 0⇐⇒ (t, 1, x) ∈ P2/3
3 (instead of

(s, t, x), (x , 1/8, s) ∈ Q3
r ...)

• p-norms, geometric mean, ...
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How general is the conic wheel?

K

LP

cone

quadratic

cones

SDP

power

cone

exponential

cone Continuous Optimization Folklore

“Almost all convex constraints which
arise in practice are representable using
these 5 cones.”

More evidence: Lubin et al. (2016) show that all convex instances
(333) in MINLPLIB2 are conic representable using only 4 of the
above cones.
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Verifying convexity

Is log(1/(1 + exp(−x))) ≤ 0 a convex constraint?

From ask.cvxr.com:

Verifying convexity can be hard!

Solution: Disciplined Convex Programming (DCP) by Grant, Boyd
and Ye (2006): only allow for modeling operations that preserve
convexity.
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Extremely Disciplined Convex Programming

We call modeling with the aforementioned 5 cones

Extremely Disciplined Convex Programming.

• More strict than DCP..

• ... but leading to guaranteed convexity and
conic-representability.

• Aiming at the development of efficient numerical algorithms.
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Are there more cones?

For every convex function g(x) the set

K := cl{(y , s, x) | y ≥ s · g(x/s)}

is a closed pointed convex cone. So

y ≥ g(x)⇐⇒ (y , 1, x) ∈ K.

But how de we handle K computationally, and is it tractable?
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Do we need more cones?
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Do we need more cones?

The Extremely-DCP framework is very general, but does it have
limitations?

• A folkloristic saying is not a formal theorem.

• More cones may lead to less reformulation.

Coey, Kapelevich and Vielma (2020) introduce a framework for
Generic Conic Programming, treating more exotic cones.

In the literature, note the prominent appearance of

• the completely positive,

• the copositive

• and the doubly-non-negative cone.
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Exotic cones

• The infinity norm cone

K`∞ = {x ∈ Rn | x1 ≥ ‖x2:n‖∞}

• The relative entropy cone

Kentr = cl{(x , u, v) ∈ R× Rd × Rd | x ≥
d∑

i=1

ui log(ui/vi )}

• The spectral norm cone

Kspec(d1,d2) = {(x ,X ) ∈ R× Rd1×d2 | x ≥ σ1(X )}

• Root-determinant cone, Log-determinant cone, Polynomial
weighted sum-of-squares cone, ...

For example, (x ,X ) ∈ Kspec(d1,d2) ⇐⇒
(
xId1 X

XT xId2

)
∈ Sd1+d2

+ .
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The extended conic wheel

K

LP

cone

quadratic

cones

SDP

power

cone

exponential

cone

Norm
cones,

m
atrix

cones,otherexoticcones..
.

Conic software:

• MOSEK: LP, QCP, SDP, Exp, Pow,
with MI support

• SeDuMi, CSDP, SDPA, SDPD,
SDPT3: SDP, QCP

• CPLEX, Gurobi, XPRESS:
(MI)-LP and -SOCP

• SCS: LP, QCP, SDP, Exp, Pow

• ECOS: QCP, Exp

• SCIP-SDP: MI-SDP

• Pajarito.jl: OA-framework for
MI, -QCP, -SDP, -Exp

• Hypatia.jl: Generic Conic
Programming

• Modeling: CVX, Yalmip, JuMP 38 / 67



References II

• The MOSEK modeling cookbook (2020).

• T. Gally, M. Pfetsch, S. Ulbrich: A Framework for Solving
Mixed-Integer Semidefinite Programs (2018).

• M. Lubin and E. Yamangil and R. Bent, J. P. Vielma: Extended
Formulations in Mixed-integer Convex Programming (2016).

• M. Grant, S. Boyd, Y. Ye: Disciplined Convex Programming (2006).

• C. Coey, L. Kapelevich, J. P. Vielma: Towards Practical Generic
Conic Optimization (2020).
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3. Conic duality



Lagrangian duality

Recall the nonlinear optimization problem

minimize f (x)
subject to h(x) = 0

g(x) ≤ 0.

The Lagrangian duality approach defines the Lagrange function

L(x , µ, λ) = f (x) + µTh(x) + λTg(x),

and the dual function

g(µ, λ) = inf
x
L(x , µ, λ).

If g(µ, λ) > −∞, we call (µ, λ) dual feasible.
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LP is special...

... because the dual takes on an explicit form:

f (x) = cT x , h(x) = Ax − b, g(x) = −x

leads to the Lagrange function

L(x , µ, λ) = cT x + µT (Ax − b)− λT x ,

and the dual function is finite if (dual feasibility!)

ATµ+ c − λ = 0 and λ ≥ 0.

Note that λ ≥ 0 guarantees −λT x ≤ 0 (for primal feasible x).
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Extending duality to Conic Programming

In the conic framework

minimize cT x
subject to Ax − b = 0

x ∈ K,

we need dual variables λ that satisfy

−λT x ≤ 0 ∀x ∈ K,

thus giving rise to the set

K∗ = {y ∈ Rn | yT x ≥ 0 ∀x ∈ K}.

For any ∅ 6= K, K∗ is a closed convex cone, and if K is a cone, we
call K∗ its dual cone!
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Conic dual problem

The conic dual takes on the (explicit!) form

maximize bT y

subject to −AT y + c − λ = 0
λ ∈ K∗,

and the feasible set can more compactly be written as

c − AT y ∈ K∗ or c ≥K∗ AT y .

Weak duality comes for free:

bT y = (Ax)T y = xT · AT y = xT · (c − λ) = cT x − λT x ≤ cT x .
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Dual cones

x2

x3

x1

Self-duality: for K ∈ {Rn
+,Qn,Sn+},

K∗ = K.

Kexp is not self-dual:

(Kexp)∗ = cl{x ∈ R3 | x1 ≥ −x3 exp(x2/x3), x3 < 0}

x2

x3

x1
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Farkas lemma - the LP case

a2

b

a1

a3

A(Rn
+) = {Ax | x ≥ 0}

(
A(Rn

+)
)◦

= {y | yTA ≤ 0}

Either Ax = b, x ≥ 0 is feasible, or yTA ≤ 0, yTb > 0 is so.
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Farkas Lemma - the conic version

Let A(K) = {Ax | x ∈ K}. The LP case translates almost
verbatim to the conic case:

Lemma (Gärtner & Matoušek (2011))

Let K be a closed convex cone. Exactly of of the following
statements is true:

1. b ∈ A(K) (primal system is feasible).

2. −yTA ∈ K∗, bT y > 0 is feasible.

3. b /∈ A(K) (primal system is infeasible), but b ∈ cl (A(K)).

In the third alternative the primal system is only limit-feasible.

47 / 67



An ill-posed example

minimize u
subject to v = 0

w =
1

2
(u, v ,w) ∈ Qn

r

v

w

a1

a2

b

One can show that A(Qn
r ) = (R>0 × R) ∪ {(0, 0)}.

Thus b /∈ A(Qn
r ) but b ∈ cl (A(Qn

r ))!
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Well-posed but infeasible - certified!

minimize u

subject to v = −1

2

w =
1

2
(u, v ,w) ∈ Qn

r
v

w

a1

a2

b

y = (−1, 0)T is a certificate of infeasibility:

yTb =
1

2
> 0 and − yTA = (0, 1, 0) ∈ (Qn

3)∗ = Qn
3.

More generally, duality enables conic solvers to produce certificates
of optimality, primal or dual infeasibility.
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Strong duality

In the LP case we have:

Theorem (LP strong duality)

If at least one of cT x∗ and bT y∗ is finite, then cT x∗ = bT y∗.

In the conic case we still have strong duality under a regularity
assumption:

Theorem ((some version of) Conic strong duality)

If there is a strictly feasible point (∃x ∈ int(K) : Ax = b) and
cT x∗ is finite, then cT x∗ = bT y∗.

In practice, a positive duality gap indicates issues with the problem
formulation.
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References III

• B. Gärtner, J Matoušek: Approximation algorithms and semidefinite
programming (2012).

• S. Boyd & L. Vandenberghe: Convex Optimization (2013).
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4. Numerical solution methods



The continuous case: Interior Point Methods

Reduce a somehow constrained
optimization problem

min
Ax=b,x∈X

ctx

to a linear equality constrained
optimization:

min
Ax=b

t · cT x + F (x)

where F (x) is such that

F (x) −−−−→
x→δX

∞.

x∗(0)

x∗(ti )

x∗(ti+1)

x∗

xi xi+1New
ton
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Conic barriers

A crucial task is to find a barrier function for a given K.

In both theory and practice, self-concordance of a barrier has
proven a desirable property.

• For the quadratic cone Qn:

Q(x) = − log(x21 − x22 − . . .− x2n )

• For the semidefinite cone Sn+:

S(X ) = − log(det(x))

• For the relative entropy cone Kentr :

E (X ) = −
d∑

i=1

(log(ui ) + log(vi ))− log(x −
d∑

i=1

ui log(ui/vi ))
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Self-dual embedding

Several IPMs for Conic Programming use the homogeneous model
(or the self-dual embedding):

Ax − bτ = 0

cτ − AT y − λ = 0

cT x − bT y + κ = 0

x ∈ K, λ ∈ K∗, τ, κ ≥ 0,

encapsulates different duality cases:

• If τ > 0, κ = 0 then
1

τ
(x , y , λ) is optimal,

Ax = bτ, cτ − AT y = λ, cT x − bT y = 0.

• If τ = 0, κ > 0 then the problem is infeasible,

Ax = 0, −AT y = λ, cT x − bT y < 0.

• If τ = 0, κ = 0 then the problem is ill-posed.
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Symmetric vs. non-symmetric cones

IPMs for symmetric cones are more extensively studied and
mature.

• For symmetric cones, the so-called centrality condition is just
a perturbed KKT-system.

• For symmetric cones we have the Nesterov-Todd scaling

Wx = W−1λ = s,

• but not for non-symmetric cones:

Vx = V−Tλ = s.

Implementing IPMs for non-symmetric cones is an active research
area! 56 / 67
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point methods to symmetric cones (2003).
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nonsymmetric convex conic optimization (2015).

• S. A. Serrano: Algorithms for unsymmetric cone optimization and
an implementation for problems with the exponential cone (2015).

• D. Papp and S. Yıldız: On A homogeneous interior-point algorithm
for non-symmetric convex conic optimization (2017).

• D. Papp and S. Yıldız: Sum-of-squares optimization without
semidefinite programming (2019).

• J. Dahl and E Andersen: A primal-dual interior-point algorithm for
nonsymmetric exponential-cone optimization (2019).
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The Mixed-Integer case

Recall the Mixed-Integer Conic Programming problem:

minimize cT x
subject to Ax = b

x ∈ K ∩
(
Zp × Rn−p)

Two (convex) Mixed-Integer Nonlinear Programming approaches
have been prominently translated to Mixed-Integer Conic
Programming:

• Non-linear Branch-and-Bound → Conic Branch-and-Bound.
• Outer approximation: a convex constraint g(x) ≤ 0 can be

approximated by a gradient cut

g(x̂) +∇g(x̂)T (x − x̂) ≤ 0.

• In the conic case we have other ways of approximating the
feasible set. 58 / 67



Conic outer approximation

Exploit the polar cone K◦ = −K∗ (exploit structure!):

• Clearly K = {x | aT x ≤ 0 ∀a ∈ K◦}, so any point a ∈ K◦
separates x̂ /∈ K: aT x̂ > 0.

• If K = {x | g(x) ≤ 0}, then a = ∇g(x̂) is a separator, see
Lubin (2017).

• Otherwise, one can solve the maximal separation problem

max
a∈K◦,‖a‖2≤1

aT x̂ .

• This is the dual of the projection problem min
x∈K
‖x − x̂‖2.
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Cone projections

x2

x3

x1

For the symmetric cones, the projection problem can be solved
algebraically! 60 / 67



Cone projections

For the exponential and power cones, the projection problem is at
most a univariate root-finding problem, shown by Hien (2015) and
Friberg (2018).

x2

x3

x1
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Mixed-Integer Conic Programming as a research area

When developing (components of) Mixed-Integer Conic
Programming solvers, we may:

• exploit the fact of dealing with a cone K:
• Deriving disjunctive cuts: Lodi, Tanneau, Vielma (2020).
• Conic outer approximation: Coey, Lubin, Vielma (2018).

• exploit the fact of dealing with a specific cone (limited
structure!):
• Cutting planes for Qn: Andersen, Jensen (2013) and others.
• Primal heuristics for Qn: Çay, Pólik, Terlaky (2018).
• Disjunctive Programming techniques: Bernal (2019).
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Disjunctive cuts

x̂

• In the general convex case, Bonami
(2011) proposed to

1. solve NLP,
2. build OA,
3. solve Cut Generating LP

• In the conic case, Lodi, Tanneau,
Vielma (2020)

1. solve Cut Generating Conic
Program

An application of conic duality!

63 / 67



Disjunctive programming

When dealing with nonlinear disjunctive, or indicator constraints

z = 1 =⇒ g(x) ≤ 0,

Ceria and Soares (1999) show that the perspective function
z · g(x/z) can be used for building strong continuous relaxations.

This is just another cone, maybe a well-known one:

• z = 1 =⇒ (y , 1, x) ∈ Q3
r leads to (y , z , x) ∈ Q3

r .

• z = 1 =⇒ (y , 1, x) ∈ Kexp leads to (y , z , x) ∈ Kexp.

There are no differentiability issues!
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Mixed-Integer Conic Programming as a research area

“Mixed-Integer Conic Programming is very immature yet, so
good improvements can be expected as theory and practice
develop.”
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