
It’s a Bird... It’s a Plane... It’s

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

MINOA ESR Days 2021
March 4, 2021

Outline

1 Why bother?

2 Decomposition-aware modelling systems

3 SMS++: design goals

4 SMS++: basic components

5 SMS++: existing Block and Solver

6 SMS++: (some of) the missing pieces

7 Conclusions

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 1 / 34

Why bother?

Mainly a selfish reason and an altruistic one

Selfish reason: I’ve made decomposition stuff for many years, but
(almost) nobody cares

Altruistic version of the selfish reason: decomposition may be useful
for many, but it’s too difficult to do in practice

Altruistic reason: stop a lot of good programming going to waste

Programming is hard, good programming is harder, optimization is
hard, good programming for optimization is extremely hard

Typically done early on in the career (you)

Does not “pay” much career-wise (wrong)

Many months/years of your life go down the drain because developing,
maintaining and supporting a good package is not “cost-effective”

Selfish version of the altruistic reason: if all this work was readily
available decomposition would make a lot more sense, and my own
work would be more useful

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 2 / 34

Why bother?

Mainly a selfish reason and an altruistic one

Selfish reason: I’ve made decomposition stuff for many years, but
(almost) nobody cares

Altruistic version of the selfish reason: decomposition may be useful
for many, but it’s too difficult to do in practice

Altruistic reason: stop a lot of good programming going to waste

Programming is hard, good programming is harder, optimization is
hard, good programming for optimization is extremely hard

Typically done early on in the career (you)

Does not “pay” much career-wise (wrong)

Many months/years of your life go down the drain because developing,
maintaining and supporting a good package is not “cost-effective”

Selfish version of the altruistic reason: if all this work was readily
available decomposition would make a lot more sense, and my own
work would be more useful

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 2 / 34

Why bother?

Mainly a selfish reason and an altruistic one

Selfish reason: I’ve made decomposition stuff for many years, but
(almost) nobody cares

Altruistic version of the selfish reason: decomposition may be useful
for many, but it’s too difficult to do in practice

Altruistic reason: stop a lot of good programming going to waste

Programming is hard, good programming is harder, optimization is
hard, good programming for optimization is extremely hard

Typically done early on in the career (you)

Does not “pay” much career-wise (wrong)

Many months/years of your life go down the drain because developing,
maintaining and supporting a good package is not “cost-effective”

Selfish version of the altruistic reason: if all this work was readily
available decomposition would make a lot more sense, and my own
work would be more useful

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 2 / 34

Why bother?

Mainly a selfish reason and an altruistic one

Selfish reason: I’ve made decomposition stuff for many years, but
(almost) nobody cares

Altruistic version of the selfish reason: decomposition may be useful
for many, but it’s too difficult to do in practice

Altruistic reason: stop a lot of good programming going to waste

Programming is hard, good programming is harder, optimization is
hard, good programming for optimization is extremely hard

Typically done early on in the career (you)

Does not “pay” much career-wise (wrong)

Many months/years of your life go down the drain because developing,
maintaining and supporting a good package is not “cost-effective”

Selfish version of the altruistic reason: if all this work was readily
available decomposition would make a lot more sense, and my own
work would be more useful

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 2 / 34

Why bother?

Mainly a selfish reason and an altruistic one

Selfish reason: I’ve made decomposition stuff for many years, but
(almost) nobody cares

Altruistic version of the selfish reason: decomposition may be useful
for many, but it’s too difficult to do in practice

Altruistic reason: stop a lot of good programming going to waste

Programming is hard, good programming is harder, optimization is
hard, good programming for optimization is extremely hard

Typically done early on in the career (you)

Does not “pay” much career-wise (wrong)

Many months/years of your life go down the drain because developing,
maintaining and supporting a good package is not “cost-effective”

Selfish version of the altruistic reason: if all this work was readily
available decomposition would make a lot more sense, and my own
work would be more useful

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 2 / 34

Why bother?

Mainly a selfish reason and an altruistic one

Selfish reason: I’ve made decomposition stuff for many years, but
(almost) nobody cares

Altruistic version of the selfish reason: decomposition may be useful
for many, but it’s too difficult to do in practice

Altruistic reason: stop a lot of good programming going to waste

Programming is hard, good programming is harder, optimization is
hard, good programming for optimization is extremely hard

Typically done early on in the career (you)

Does not “pay” much career-wise (wrong)

Many months/years of your life go down the drain because developing,
maintaining and supporting a good package is not “cost-effective”

Selfish version of the altruistic reason: if all this work was readily
available decomposition would make a lot more sense, and my own
work would be more useful

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 2 / 34

Outline

1 Why bother?

2 Decomposition-aware modelling systems

3 SMS++: design goals

4 SMS++: basic components

5 SMS++: existing Block and Solver

6 SMS++: (some of) the missing pieces

7 Conclusions

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 3 / 34

Decomposition-aware modelling systems

Decomposition is complex, but so is any Branch-and-X

Need general-purpose efficient decomposition software:

Cplex does Benders’, structure automatic or user hints

SCIP[1] does B&C&P (one-level D-W), pricing & reformulation up to
the user (plugins)

GCG[1] extends SCIP with automatic and user-defined (one-level) D-W
and recently also a generic (one-level) Benders’ approach[2]

D-W approaches for two-stage stochastic programs are implemented in
DDSIP[3] and PIPS[4], the latter interfaced with StructJuMP[5]

The BaPCoD B&C&P code has been used to develop Coluna.jl[6],
doing one-level D-W and (alpha) Benders’, multi-level planned

No multi-level C++, so we started one

[1] https://scipopt.org, https://gcg.or.rwth-aachen.de

[2] Maher “Implementing the Branch-and-Cut approach for a general purpose Benders’ decomposition framework” EJOR, 2021

[3] https://github.com/RalfGollmer/ddsip

[4] https://github.com/Argonne-National-Laboratory/PIPS

[5] https://github.com/StructJuMP/StructJuMP.jl

[6] https://github.com/atoptima/Coluna.jl

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 4 / 34

https://scipopt.org
https://gcg.or.rwth-aachen.de
https://github.com/RalfGollmer/ddsip
https://github.com/Argonne-National-Laboratory/PIPS
https://github.com/StructJuMP/StructJuMP.jl
https://github.com/atoptima/Coluna.jl

Outline

1 Why bother?

2 Decomposition-aware modelling systems

3 SMS++: design goals

4 SMS++: basic components

5 SMS++: existing Block and Solver

6 SMS++: (some of) the missing pieces

7 Conclusions

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 5 / 34

https://gitlab.com/smspp/smspp-project

Open source (LGPL3)

Public as of February 8, but some 8+ years in the making

https://gitlab.com/smspp/smspp-project

What SMS++ is

A core set of C++-17 classes implementing a modelling system that:

explicitly supports the notion of Block ≡ nested structure

separately provides “semantic” information from “syntactic” details
(list of constraints/variables ≡ one specific formulation among many)

allows exploiting specialised Solver on Block with specific structure

manages any dynamic change in the Block

beyond “just” generation of constraints/variables

supports reformulation/restriction/relaxation of Block

has built-in parallel processing capabilities

should be able to deal with almost anything (bilevel, PDE, . . .)

An hopefully growing set of specialized Block and Solver

In perspective an ecosystem fostering collaboration and code sharing

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 6 / 34

What SMS++ is not

An algebraic modelling language: Block / Solver are C++ code

(although it provides some modelling-language-like functionalities)

For the faint of heart: primarily written for algorithmic experts

(although users may benefit from having many pre-defined Block)

Stable: only version 0.4, lots of further development ahead,

significant changes in interfaces not ruled out, actually expected

(although current Block / Solver very thoroughly tested)

Interfaced with many solvers: only Cplex, SCIP, MCFClass, StOpt

(although the list should hopefully grow)

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 7 / 34

Outline

1 Why bother?

2 Decomposition-aware modelling systems

3 SMS++: design goals

4 SMS++: basic components

5 SMS++: existing Block and Solver

6 SMS++: (some of) the missing pieces

7 Conclusions

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 8 / 34

A Crude Schematic

Objective

Solver

Modification

Block2

...

Block1

Block

Constraint
SC1 SC2

...DC1 DC2

...
Variable

SV1 SV2

...DV1 DV2

...

{ Modificationi }
{ Solveri }

OF

physical representation

 abstract
representation

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 9 / 34

Block

Block = abstract class representing the general concept of
“a (part of a) mathematical model with a well-understood identity”

Each :Block a model with specific structure
(e.g., MCFBlock:Block = a Min-Cost Flow problem)

Physical representation of a Block: whatever data structure is
required to describe the instance (e.g., G , b, c , u)

Possibly alternative abstract representation(s) of a Block:
one Objective (but possibly vector-valued)

any # of groups of (static) Variable

any # of groups of std::list of (dynamic) Variable

any # of groups of (static) Constraint

any # of groups of std::list of (dynamic) Constraint

groups of Variable/Constraint can be single (std::list) or
std::vector (. . .) or boost::multi array

Any # of sub-Blocks (recursively), possibly of specific type
(e.g., Block::MMCFBlock has k Block::MCFBlock inside)

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 10 / 34

Variable

Abstract concept, thought to be extended (a matrix, a function, . . .)

Does not even have a value

Knows which Block it belongs to

Can be fixed and unfixed to/from its current value (whatever that is)

Influences a set of Constraint/Objective/Function
(actually, a set of ThinVarDepInterface)

Fundamental design decision: “name” of a Variable = its memory
address =⇒ copying a Variable makes a different Variable =⇒
dynamic Variables always live in std::lists

VariableModification:Modification (fix/unfix)

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 11 / 34

Constraint

Abstract concept, thought to be extended (any algebraic constraint, a
matrix constraint, a PDE constraint, bilevel program, . . .)

Depends from a set of Variable (:ThinVarDepInterface)

Either satisfied or not by the current value of the Variable,

checking it possibly costly (:ThinComputeInterface)

Knows which Block it belongs to

Can be relaxed and enforced

Fundamental design decision: “name” of a Constraint = its
memory address =⇒ copying a Constraint makes a different
Constraint =⇒ dynamic Constraints always live in std::lists

ConstraintModification:Modification (relax/enforce)

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 12 / 34

Objective

Abstract concept, does not specify its return value (vector, set, . . .)

Either minimized or maximized

Depends from a set of Variable (:ThinVarDepInterface)

Must be evaluated w.r.t. the current value of the Variable,

possibly a costly operation (:ThinComputeInterface)

RealObjective:Objective implements “value is an extended real”

Knows which Block it belongs to

Same fundamental design decision . . .
(but there is no such thing as a dynamic Objective)

ObjectiveModification:Modification (change verse)

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 13 / 34

Function

Real-valued Function

Depends from a set of Variable (:ThinVarDepInterface)

Must be evaluated w.r.t. the current value of the Variable,

possibly a costly operation (:ThinComputeInterface)

Approximate computation supported in a quite general way[56]

(since :ThinComputeInterface, and that does)

FunctionModification[Variables] for “easy” changes =⇒
reoptimization (shift, adding/removing “quasi separable” Variable)

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 14 / 34

C05Function and C15Function

C05Function/C15Function deal with 1st/2nd order information
(not necessarily continuous)

General concept of “linearization” (gradient, convex/concave
subgradient, Clarke subgradient, . . .)

Multiple linearizations produced at each evaluation (local pool)

Global pool of linearizations for reoptimization:

convex combination of linearizations

“important linearization” (at optimality)

C05FunctionModification[Variables/LinearizationShift] for
“easy” changes =⇒ reoptimization (linearizations shift, some
linearizations entries changing in simple ways)

C15Function supports (partial) Hessians

Arbitrary hierarchy of :Function possible/envisioned,
any one that makes sense for application and/or solution method

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 15 / 34

Closer to the ground

ColVariable:Variable: “value = one single real” (possibly ∈ Z)

RowConstraint:Constraint: “l ≤ a real ≤ u” =⇒
has dual variable (single real) attached to it

OneVarConstraint:RowConstraint: “a real” =

a single ColVariable ≡ bound constraints

FRowConstraint:RowConstraint: “a real” given by a Function

FRealObjective:RealObjective: “value” given by a Function

LinearFunction:Function: a linear form in ColVariable

DQuadFunction:Function: a separable quadratic form

Many things missing (AlgebraicFunction, DenseLinearFunction,
Matrix/VectorVariable, . . .)

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 16 / 34

Block and Solver

Any # of Solver attached to a Block to solve it

:Solver for a specific :Block can use the physical representation
=⇒ no need for explicit Constraint
=⇒ abstract representation of Block only constructed on demand

However, Variable are always present to interface with Solver

(this may change thanks to methods factory)

A general-purpose Solver uses the abstract representation

Dynamic Variable/Constraint can be generated on demand
(user cuts/lazy constraints/column generation)

For a Solver attached to a Block:

Variable not belonging to the Block are constants

Constraint not belonging to the Block are ignored

(belonging = declared there or in any sub-Block recursively)

Objective of sub-Blocks summed to that of father Block if has
same verse, otherwise min/max

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 17 / 34

Solver

Solver = interface between a Block and algorithms solving it

Each Solver attached to a single Block, from which it picks all the
data, but any # of Solver can be attached to the same Block

Solutions are written directly into the Variable of the Block

Individual Solver can be attached to sub-Block of a Block

Tries to cater for all the important needs:
optimal and sub-optimal solutions, provably unbounded/unfeasible

time/resource limits for solutions, but restarts (reoptimization)

any # of multiple solutions produced on demand

lazily reacts to changes in the data of the Block via Modification

Slanted towards RealObjective (≈optimality = up/low bounds)

CDASolver:Solver is “Convex Duality Aware”: bounds are
associated to dual solutions (possibly, multiple)

Provides general events mechanism (ThinComputeInterface does)

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 18 / 34

Block and Modification

Most Block components can change, but not all:
set of sub-Block

and shape of groups of Variable/Constraint

Any change is communicated to each interested Solver (attached to
the Block or any of its ancestor) via a Modification object

anyone there() ≡ ∃ interested Solver (Modification needed)

However, two different kinds of Modification (what changes):

physical Modification, only specialized Solver concerned

abstract Modification, only Solver using it concerned

Abstract Modification used to keep both representations in sync
=⇒ a single change may trigger more than one Modification

=⇒ concerns Block() mechanism to avoid this to repeat
=⇒ parameter in changing methods to avoid useless Modification

Specialized Solver disregard abstract Modification and vice-versa

A Block may refuse to support some changes (explicitly declaring it)

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 19 / 34

Modification

Almost empty base class, then everything has its own derived ones

Heavy stuff can be attached to a Modification

(e.g., added/deleted dynamic Variable/Constraint)

Each Solver has the responsibility of cleaning up its list of
Modification (smart pointers → memory eventually released)

Solver supposedly reoptimize to improve efficiency, which is easier if
you can see all list of changes at once (lazy update)

GroupModification to (recursively) pack many Modification

together =⇒ different “channels” in Block

Modification processed in the arrival order to ensure consistency

A Solver may optimize the changes (Modifications may cancel
each outer out . . .), but its responsibility

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 20 / 34

Support to (coarse-grained) Parallel Computation

Block can be (r/w) lock()-ed and read lock()-ed

lock()-ing a Block automatically lock()s all inner Block

lock() (but not read lock()) sets an owner and records its
std::thread::id; other lock() from the same thread fail
(std::mutex would not work there)

Similar mechanism for read lock(), any # of concurrent reads

Write starvation not handled yet

A Solver can be “lent an ID” (solving an inner Block)

The list of Modification of Solver is under an “active guard”
(std::atomic)

Distributed computation under development, can exploit general
serialize/deserialize Block capabilities, Cray/HPE “Fugu” framework

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 21 / 34

Solution

Block produces Solution object, possibly using its sub-Blocks’

Solution can read() its own Block and write() itself back

Solution is Block-specific rather than Solver-specific

Solution may save dual information

Solution may save only a specific subset of primal/dual information

Linear combination of Solution supported =⇒ “less general”

Solution may (automatically) convert in “more general” ones

Like Block, Solution are tree-structured complex objects

ColVariableSolution:Solution uses the abstract representation
of any Block that only have (std::vector or boost::multi array

of) (std::list of) ColVariables to read/write the solution

RowConstraintSolution:Solution same for dual information
(RowConstraint), ColRowSolution for both

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 22 / 34

Configuration

Block a tree-structured complex object =⇒
Configuration for them a (possibly) tree-structured complex object

But also SimpleConfiguration<T>:Configuration

(T an int, a double, a std::pair<>, . . .)

[C/O/R]BlockConfiguration:Configuration set [recursively]:

which dynamic Variable/Constraint are generated, how
(Solver, time limit, parameters . . .)

which Solution is produced (what is saved)

the ComputeConfiguration:Configuration of any
Constraint/Objective that needs one

a bunch of other Block parameters

[R]BlockSolverConfiguration:Configuration set [recursively]
which Solver are attached to the Block and their
ComputeConfiguration:Configuration

Can be clear()-ed for cleanup

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 23 / 34

R3Block

Often reformulation crucial, but also relaxation or restriction:
get R3 Block() produces one, possibly using sub-Blocks’

Obvious special case: copy (clone) should always work

Available R3Blocks :Block-specific, a :Configuration needed

R3Block completely independent (new Variable/Constraint),
useful for algorithmic purposes (branch, fix, solve, . . .)

Solution of R3Block useful to Solver for original Block:
map back solution() (best effort in case of dynamic Variable)

Sometimes keeping R3Block in sync with original necessary:
map forward Modification(), task of original Block

map forward solution() and map back Modification() useful,
e.g., dynamic generation of Variable/Constraint in the R3Block

:Block is in charge of all this, thus decides what it supports

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 24 / 34

A lot of other support stuff

All tree-structured complex objects (Block, Configuration, . . .)
and Solver have an (almost) automatic factory

All tree-structured complex objects (. . .) have methods to
serialize/deserialize themselves to netCDF files

A methods factory for changing the physical representation without
knowing of which :Block it exactly is (standardised interface)

AbstractBlock for constructing a model a-la algebraic language, can
be derived for “general Block + specific part”

PolyhedralFunction[Block], very useful for decomposition

AbstractPath for indexing any Constranit/Variable in a Block

FakeSolver:Solver stashes away all Modification,
UpdateSolver:Solver immediately forwards/R3Bs them

. . .

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 25 / 34

Outline

1 Why bother?

2 Decomposition-aware modelling systems

3 SMS++: design goals

4 SMS++: basic components

5 SMS++: existing Block and Solver

6 SMS++: (some of) the missing pieces

7 Conclusions

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 26 / 34

Main Existing :Block

MCFBlock/MMCFBlock: single/multicommodity flow (p.o.c.)

UCBlock for UC, abstract UnitBlock with several concrete
(ThermalUnitBlock, HydroUnitBlock, . . .), abstract
NetworkBlock with a few concrete (DCNetworkBlock)

LagBFunction:{C05Function,Block} transforms any Block (with
appropriate Objective) into its dual function

BendersBFunction:{C05Function,Block} transforms any Block

(with appropriate Constraint) into its value function

StochasticBlock implements realizations of scenarios into any
Block (using methods factory)

SDDPBlock represents multi-stage stochastic programs suitable for
Stochastic Dual Dynamic Programming

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 27 / 34

Main “Basic” :Solver

MCFSolver: templated p.o.c. wrapper to MCFClass[7] for MCFBlock

DPSolver for ThermalUnitBlock (still needs serious work)

MILPSolver: constructs matrix-based representation of any “LP”
Block: ColVariable, FRowConstraint, FRealObjective with
LinearFunction or DQuadFunction

CPXMILPSolver:MILPSolver and SCIPMILPSolver:MILPSolver

wrappers for Cplex and SCIP (to be improved)

BundleSolver:CDASolver: SMS++-native version of[8] (still shares
some code, dependency to be removed), optimizes any (sum of)
C05Function, several (but not all) state-of-the-art tricks

SDDPSolver: wrapper for SDDP solver StOpt[9] using
StochasticBlock, BendersBFunction and PolyhedralFunction

SDDPGreedySolver: greedy forward simulator for SDDPBlock

[7] https://github.com/frangio68/Min-Cost-Flow-Class

[8] https://gitlab.com/frangio68/ndosolver_fioracle_project

[9] https://gitlab.com/stochastic-control/StOpt

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 28 / 34

https://github.com/frangio68/Min-Cost-Flow-Class
https://gitlab.com/frangio68/ndosolver_fioracle_project
https://gitlab.com/stochastic-control/StOpt

Our Masterpiece: LagrangianDualSolver

Works for any Block with natural block-diagonal structure: no
Objective or Variable, all Constraint linking the inner Block

Using LagBFunction stealthily constructs the Lagrangian Dual
w.r.t. linking Constraint, R3B-ing or “stealing” the inner Block

Solves the Lagrangian Dual with appropriate CDASolver (e.g., but
not necessarily, BundleSolver), provides dual and “convexified”
solution in original Block

Can attach LagrangianDualSolver and (say) :MILPSolver to
same Block, solve in parallel!

Weeks of work in days/hours (if Block of the right form already)

Hopefully soon BendersDecompositionSolver (crucial component
BendersBFunction existing and tested)

Multilevel nested parallel heterogeneous decomposition by design
(but I’ll believe it when I’ll see it running)

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 29 / 34

Outline

1 Why bother?

2 Decomposition-aware modelling systems

3 SMS++: design goals

4 SMS++: basic components

5 SMS++: existing Block and Solver

6 SMS++: (some of) the missing pieces

7 Conclusions

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 30 / 34

The many things that we do not have (yet)

A relaxation-agnostic Branch-and-X Solver (could recycle OOBB?)

Many other forms of (among many other things):

Variable (Vector/MatrixVariable, FunctionVariable, . . .)

Constraint (SOCConstraint, SDPConstraint, PDEConstraint,
BilevelConstraint, EquilibriumConstraint, . . .)

Objective (RealVectorObjective, . . .)

Function (AlgebraicFunction, . . .)

Better handling of many things (groups of stuff, Modification, . . .)

Interfaces with many other general-purpose solvers (GuRoBi,
OSISolverInterface, Couenne, OR-tools CP-SAT Solver, . . .)

Many many many more :Block and their specialised :Solver

Translation layers from real modelling languages (AMPL, JuMP, . . .)

In a word: users/mindshare – chicken-and-egg problem

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 31 / 34

Outline

1 Why bother?

2 Decomposition-aware modelling systems

3 SMS++: design goals

4 SMS++: basic components

5 SMS++: existing Block and Solver

6 SMS++: (some of) the missing pieces

7 Conclusions

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 32 / 34

Conclusions and (a lot of) future work

SMS++ is there, actively developed

Perhaps already useful for some fringe use cases

Could become really useful after having attracted mindshare,
self-reinforcing loop (very hard to start)

Hefty, very likely rather unrealistic, sough-after impacts:

improve collaboration and code reuse, reduce huge code waste
(I ♥ coding, breaks my ♥)

significantly increase the addressable market of decomposition

a much-needed step towards higher uptake of parallel methods

the missing marketplace for specialised solution methods

a step towards a reformulation-aware modelling system[10]

Luckily not the only game in town, but aiming for a slice of the cake

which is not a lie

Lots of fun to be had, all contributions welcome

[10] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 33 / 34

Conclusions and (a lot of) future work

SMS++ is there, actively developed

Perhaps already useful for some fringe use cases

Could become really useful after having attracted mindshare,
self-reinforcing loop (very hard to start)

Hefty, very likely rather unrealistic, sough-after impacts:

improve collaboration and code reuse, reduce huge code waste
(I ♥ coding, breaks my ♥)

significantly increase the addressable market of decomposition

a much-needed step towards higher uptake of parallel methods

the missing marketplace for specialised solution methods

a step towards a reformulation-aware modelling system[10]

Luckily not the only game in town, but aiming for a slice of the cake

which is not a lie

Lots of fun to be had, all contributions welcome

[10] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 33 / 34

Conclusions and (a lot of) future work

SMS++ is there, actively developed

Perhaps already useful for some fringe use cases

Could become really useful after having attracted mindshare,
self-reinforcing loop (very hard to start)

Hefty, very likely rather unrealistic, sough-after impacts:

improve collaboration and code reuse, reduce huge code waste
(I ♥ coding, breaks my ♥)

significantly increase the addressable market of decomposition

a much-needed step towards higher uptake of parallel methods

the missing marketplace for specialised solution methods

a step towards a reformulation-aware modelling system[10]

Luckily not the only game in town, but aiming for a slice of the cake

which is not a lie

Lots of fun to be had, all contributions welcome

[10] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 33 / 34

Conclusions and (a lot of) future work

SMS++ is there, actively developed

Perhaps already useful for some fringe use cases

Could become really useful after having attracted mindshare,
self-reinforcing loop (very hard to start)

Hefty, very likely rather unrealistic, sough-after impacts:

improve collaboration and code reuse, reduce huge code waste
(I ♥ coding, breaks my ♥)

significantly increase the addressable market of decomposition

a much-needed step towards higher uptake of parallel methods

the missing marketplace for specialised solution methods

a step towards a reformulation-aware modelling system[10]

Luckily not the only game in town, but aiming for a slice of the cake

which is not a lie

Lots of fun to be had, all contributions welcome

[10] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 33 / 34

Conclusions and (a lot of) future work

SMS++ is there, actively developed

Perhaps already useful for some fringe use cases

Could become really useful after having attracted mindshare,
self-reinforcing loop (very hard to start)

Hefty, very likely rather unrealistic, sough-after impacts:

improve collaboration and code reuse, reduce huge code waste
(I ♥ coding, breaks my ♥)

significantly increase the addressable market of decomposition

a much-needed step towards higher uptake of parallel methods

the missing marketplace for specialised solution methods

a step towards a reformulation-aware modelling system[10]

Luckily not the only game in town, but aiming for a slice of the cake

which is not a lie

Lots of fun to be had, all contributions welcome

[10] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 33 / 34

Acknowledgements

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 773897

Copyright © Università di Pisa 2021, all rights reserved.

This document may not be copied, reproduced, or modified in whole or in part for
any purpose without written permission from the PLAN4RES Consortium. In

addition, an acknowledgement of the authors of the document and all applicable
portions of the copyright notice must be clearly referenced.

This document may change without notice.

The content of this document only reflects the author’s views. The European
Commission / Innovation and Networks Executive Agency is not responsible for

any use that may be made of the information it contains.
A. Frangioni (DI — UniPi) SMS++ ESR Days 2021 34 / 34

	Why bother?
	Decomposition-aware modelling systems
	SMS++: design goals
	SMS++: basic components
	SMS++: existing Block and Solver
	SMS++: (some of) the missing pieces
	Conclusions

