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Bilevel programming

min
x , y

F (x , y)

s.t. G (x , y) ≤ 0
y ∈ arg min

y ′
{f (x , y ′)|g(x , y ′) ≤ 0}
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Optimal value function transformation

One way to reformulate the bilevel problem is considering the
so-called optimal value function of the lower-level problem:

ϕ(x) = min
y ′
{f (x , y ′)|g(x , y ′) ≤ 0},

obtaining:

Optimal value reformulation

min
x , y

F (x , y)

s.t. G (x , y) ≤ 0
g(x , y) ≤ 0
f (x , y) ≤ ϕ(x).
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KKT transformation

If the lower level problem is convex, and a regularity condition as
Slater’s condition (or, equivalently, the (MFCQ)) is satisfied at all
feasible points, it can be replaced by its KKT conditions, obtaining:

min
x , y

F (x , y)

s.t. G (x , y) ≤ 0

∇y f (x , y) + λ>∇yg(x , y) = 0
g(x , y) ≤ 0, λ ≥ 0

λ>∇yg(x , y) = 0

If the lower level problem is not convex, this formulation is a
relaxation of the bilevel problem.
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Our bilevel formulation

min
x∈Rm

F (x)

s.t. G (x) ≤ 0 (BP)

h(x) ≤ min
y∈Rn
{1
2
y>Q(x)y + q(x)>y |Ay ≤ b}

no argmin operator but an inequality constraint that links the
upper and the lower-level problems
only the variable x in the upper level; F (x), G (x), h(x)
continuous in x
a quadratic lower-level problem Px with a feasible set F =
{y ∈ Rn : Ay ≤ b} = {y ∈ Rn : aTj y ≤ bj ,∀j = 1, . . . , r},
which is assumed not to depend on x
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s.t. G (x) ≤ 0 (BP)

h(x) ≤ min
y∈Rn
{1
2
y>Q(x)y + q(x)>y |Ay ≤ b}

no argmin operator but an inequality constraint that links the
upper and the lower-level problems
This class of programs arises in many applications requiring semi-infinite
programming (SIP) problems, i.e. optimization problems with a finite
number of variables and an infinite number of parametrized constraints of
the type ∀y ∈ Y , 0 ≤ f (x , y). In fact, if this is the case, it is sufficient to
impose that this inequality holds for the minimum over all y ∈ Y of
f (x , y) in the following way:

0 ≤ min
y∈Y

f (x , y), (1)

reformulating the SIP program into a bilevel problem.
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Dual approach



7/ 31

Introduction Dual approach Cutting plane approach Applications

SDP reformulation of the LL

Assumption

The LL feasible set

F = {y ∈ Rn : Ay ≤ b} = {y ∈ Rn : aTj y ≤ bj ,∀j = 1, . . . , r}

is compact and included in the centered l2-ball with radius ρ > 0,
which is known.

We define the following matrices:

Q(x) =

(
1
2Q(x) q(x)

2
q(x)

2
T

0

)
,

Aj =

(
0n

aj
2

aTj
2 0

)
, ∀j = 1, . . . , r .
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SDP reformulation of the LL

With this notation, under Assumption 1, the problem

min
Y∈R(n+1)×(n+1)

〈Q(x),Y 〉

s.t. 〈Aj ,Y 〉 ≤ bj , ∀j = 1, . . . , r
Tr(Y ) ≤ 1 + ρ2

Yn+1,n+1 = 1
Y � 0
rank(Y ) = 1

is an exact reformulation of the quadratic lower level Px , because

any feasible matrix Y has the form Y =

(
y
1

)(
y
1

)>
with y ∈ F

such that 〈Q(x),Y 〉 = f (x , y).
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SDP reformulation/relaxation of the LL

If we relax the non-convex constraint rank(Y ) = 1 we obtain:

min
Y∈R(n+1)×(n+1)

〈Q(x),Y 〉

s.t. 〈Aj ,Y 〉 ≤ bj , ∀j = 1, . . . , r
Tr(Y ) ≤ 1 + ρ2

Yn+1,n+1 = 1
Y � 0

It is a relaxation of the quadratic problem Px (we define it SDPx).
It is a reformulation of Px if Q � 0, despite the relaxation of the
rank constraint.
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SDP dual of SDPx

Let E be a (n + 1)× (n + 1) matrix such that

Eij =

{
1 if i = j = n + 1
0 otherwise

and In+1 the identity matrix of size (n + 1)× (n + 1). The
following SDP problem:

max
λ∈Rr

+, α∈R+, β∈R
−b>λ− α(1 + ρ2)− β

s.t. Q(x) +
r∑

j=1
λjAj + αIn+1 + βE � 0,

(DSDPx)
is a dual problem of the problem (SDPx).
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Proof

The Lagrangian of the SDP problem is defined over Y ∈ S+
n+1(R),

λ ∈ Rr
+, α ∈ R+, β ∈ R and reads

Lx(Y , λ, α, β) =

= 〈Q(x),Y 〉+
r∑

j=1
[λj (〈Aj ,Y 〉 − bj)] + α(Tr(Y )− 1− ρ2) + β(Yn+1,n+1 − 1)

= −
r∑

j=1
λjbj − α(1 + ρ2)− β +

〈
Q(x) +

r∑
j=1

λjAj + αIn+1 + βE , Y

〉
.
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+
α∈R+
β∈R
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Y∈S+

n+1(R)
Lx(Y , λ, α, β).
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.
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Proof

To prove strong duality, we prove that Slater condition holds for the
dual problem

max
λ∈Rr

+, α∈R+, β∈R
−b>λ− α(1 + ρ2)− β

s.t. Q(x) +
r∑

j=1
λjAj + αIn+1 + βE � 0,

(DSDPx)
We denote by mx the minimum eigenvalue of Q(x). By definition
of mx , matrix Q(x) + (1−mx)In+1 is positive definite. This is why
(0, 1−mx , 0) is a strictly feasible point of (DSDPx), i.e. Slater
condition holds.
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Primal-dual pair of the SDP reformulation/relaxation

Primal problem - SDPx

min
Y∈R(n+1)×(n+1)

〈Q(x),Y 〉

s.t. 〈Aj ,Y 〉 ≤ bj , ∀j
Tr(Y ) ≤ 1 + ρ2

Yn+1,n+1 = 1
Y � 0

Dual problem - DSDPx

max
λ∈Rr

+
α∈R+
β∈R

−b>λ− α(1 + ρ2)− β

s.t. Q(x) +
r∑

j=1
λjAj + αIn+1 + βE � 0

val(SDPx)val(Px) val(SDPx) = val(DSDPx)

h(x) ≤ val(DSDPx) ⇐⇒ h(x) ≤ val(SDPx)h(x) ≤ val(Px)
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If Q(x) � 0 for all feasible x
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An important step

Our bilevel formulation

min
x∈Rm

F (x)

s.t. G (x) ≤ 0
h(x) ≤ val(Px)
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An important step

A restriction/reformulation

min
x∈Rm

F (x)

s.t. G (x) ≤ 0
h(x) ≤ val(DSDPx)

because either

h(x) ≤ val(DSDPx) ⇐⇒ h(x) ≤ val(SDPx) =⇒ h(x) ≤ val(Px)

or

h(x) ≤ val(DSDPx) ⇐⇒ h(x) ≤ val(SDPx)⇐⇒ h(x) ≤ val(Px)
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An important step

A restriction/reformulation

min
x∈Rm

F (x)

s.t. G (x) ≤ 0
h(x) ≤ max

λ∈Rr
+

α∈R+
β∈R

{−b>λ− α(1 + ρ2)− β :

Q(x) +
r∑

j=1
λjAj + αIn+1 + βE � 0}
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An important step

A restriction/reformulation

min
x∈Rm

F (x)

s.t. G (x) ≤ 0
h(x) ≤ max

λ∈Rr
+

α∈R+
β∈R

{−b>λ− α(1 + ρ2)− β :

Q(x) +
r∑

j=1
λjAj + αIn+1 + βE � 0}

We can replace it by:

h(x) ≤ −b>λ− α(1 + ρ2)− β

Q(x) +
r∑

j=1
λjAj + αIn+1 + βE � 0

 (∗)
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SDP restriction/reformulation of our BP

Given the lower-level dual variables λ, α, β:

min
x ,λ,α,β

F (x)

s.t. G (x) ≤ 0

h(x) ≤ −λ>b − α(1 + ρ2)− β

Q(x) +
∑

j λjAj + αIn+1 + βE � 0

x ∈ Rm, λ ∈ Rr
+, α ∈ R+, β ∈ R

(BPR)

We remark that the single-level problem (BPR)
is convex if Q(x) and q(x) depend on x linearly, while F (x), G(x) and
h(x) are convex,

is a SDP problem if Q(x) and q(x) depend on x linearly, while F (x),
G(x) and h(x) are convex and semidefinite representable.
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Cutting plane approach
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Cutting plane approach

1: Let k = 1. Initialize the relaxation Rk of the bilevel problem
(BP), obtained by considering the upper-level problem only.

2: while true do
3: Solve Rk , obtaining the optimal solution xk .
4: Compute an optimal solution yk of the LL problem for x = xk .
5: if h(xk) ≤ 1

2 (y k)>Q(xk)y k + q(xk)>y k then
6: The algorithm terminates and (xk , yk) is the optimal solu-

tion of the bilevel formulation.
7: else
8: Define Rk+1 as Rk with the adjoined inequality:

h(x) ≤ 1
2

(y k)>Q(x)y k + q(x)>y k .

9: k := k + 1
10: end if
11: end while
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Applications
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Constrained Quadratic
Regression
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Constrained Quadratic Regression

z =
1
2
w>Q̄w + q̄>w + c̄ + ε

w ∈ Rn features vector
z ∈ R output
Q̄ ∈ Rn×n s.t. Q̄ = Q̄>

q̄ ∈ Rn

c̄ ∈ R
ε ∼ N (0, σ2) Gaussian error

Let us suppose that the parameters of this model are unknown, but
we are given a dataset (wi , zi )1≤i≤P ∈ (Rn × R)P .
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Constrained quadratic regression problem

Problem:
finding the maximum likelihood estimator for Q̄ ∈ Rn×n, q̄ ∈ Rn, c̄ ∈ R~w�
computing the triplet (Q, q, c) ∈ Rn×n × Rn × R that minimizes the

least-squares error
P∑

i=1
(zi − 1

2w
T
i Qwi − qTwi − c)2.

Assumption
the features vector belongs to a given polytope F ⊂ Rn

the noiseless value 1
2y

T Q̄y + q̄T y + c̄ is non-negative for any
y ∈ F
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Problem formulation

Semi-infinite formulation

min
Q,q,c

P∑
i=1

(zi − 1
2w

T
i Qwi − qTwi − c)2

s.t. Q = QT

1
2y

TQy + qT y + c ≥ 0, ∀y ∈ F

Q ∈ Rn×n, q ∈ Rn, c ∈ R.

Bilevel formulation

min
Q,q,c

P∑
i=1

(zi − 1
2w

T
i Qwi − qTwi − c)2

s.t. Q = QT

min
y∈F
{ 1

2y
TQy + qT y} ≥ −c

Q ∈ Rn×n, q ∈ Rn, c ∈ R.
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Dual restriction/reformulation

Q not PSD =⇒ we obtain an upper bound of the BP

min
Q,q,c,λ,α,β

P∑
i=1

(zi − 1
2w
>
i Qwi − q>wi − c)2

s.t. Q = Q>

−λ>b − α(1 + ρ2)− β ≥ −c
1
2

(
Q + 2αIn q

q> 2(β + α)

)
+

r∑
j=1

λjAj � 0

Q ∈ Rn×n, q ∈ Rn, c ∈ R
λ ∈ Rr

+, α ∈ R+, β ∈ R.

In general, it is a restriction of the original bilevel problem
formulation since Q may not necessarily be PSD.
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KKT relaxation/reformulation

Q not PSD =⇒ we obtain a lower bound of the BP

min
Q,q,c,y ,γ

P∑
i=1

(zi − 1
2w
>
i Qwi − q>wi − c)2

s.t. Q = Q>
1
2y
>Qy + q>y ≥ −c

Ay ≤ b
Qy + q + A>γ = 0
γ>(Ay − b) = 0
Q ∈ Rn×n, q ∈ Rn, c ∈ R, y ∈ Rn, γ ∈ Rr

+,

In general, it is a relaxation of the original bilevel problem
formulation since Q may not necessarily be PSD.
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Zero-sum game with
quadratic payoff
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Zero-sum game with quadratic payoff

Let us consider an undirected graph G = (V ,E ) (with n = |V |).
Each player positions a resource on each node i ∈ V . After
normalization, we can consider that the action set of both players is

∆n = {x ∈ R+ :
n∑

i=1
xi = 1}.

2 players zero-sum game: P1(x , y) = −P2(x , y), being Pi (x , y) the
payoff of player i related to the pair of strategies (x , y).
=⇒ We need to specify just one game payoff P(x , y)
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Game payoff

The game payoff P(x , y) related to the pair of strategies
(x , y) ∈ ∆n ×∆n is

P(x , y) = −x>My + c1(x)− c2(x , y),

given by the sum of:
the opposite of a term describing the “proximity” between x
and y in the graph, with M ∈ Rn×n is the matrix defined as
Mij = 1 if i = j or {i , j} ∈ E , and Mij = 0 otherwise
the quadratic costs that player 1 has to pay to deploy his
resources on the graph: c1(x) = 1

2x
>Q1x + q>1 x

the opposite of the quadratic costs that player 2 has to pay to
deploy her resources on the graph, and that is influenced by
player 1 strategy: c2(x , y) = 1

2y
>Q2(x)y + q>2 y .



26/ 31

Introduction Dual approach Cutting plane approach Applications

Game payoff

The game payoff P(x , y) related to the pair of strategies
(x , y) ∈ ∆n ×∆n is

P(x , y) = −x>My + c1(x)− c2(x , y),

given by the sum of:
the opposite of a term describing the “proximity” between x
and y in the graph, with M ∈ Rn×n is the matrix defined as
Mij = 1 if i = j or {i , j} ∈ E , and Mij = 0 otherwise
the quadratic costs that player 1 has to pay to deploy his
resources on the graph: c1(x) = 1

2x
>Q1x + q>1 x

the opposite of the quadratic costs that player 2 has to pay to
deploy her resources on the graph, and that is influenced by
player 1 strategy: c2(x , y) = 1

2y
>Q2(x)y + q>2 y .



26/ 31

Introduction Dual approach Cutting plane approach Applications

Game payoff

The game payoff P(x , y) related to the pair of strategies
(x , y) ∈ ∆n ×∆n is

P(x , y) = −x>My + c1(x)− c2(x , y),

given by the sum of:
the opposite of a term describing the “proximity” between x
and y in the graph, with M ∈ Rn×n is the matrix defined as
Mij = 1 if i = j or {i , j} ∈ E , and Mij = 0 otherwise
the quadratic costs that player 1 has to pay to deploy his
resources on the graph: c1(x) = 1

2x
>Q1x + q>1 x

the opposite of the quadratic costs that player 2 has to pay to
deploy her resources on the graph, and that is influenced by
player 1 strategy: c2(x , y) = 1

2y
>Q2(x)y + q>2 y .



26/ 31

Introduction Dual approach Cutting plane approach Applications

Game payoff

The game payoff P(x , y) related to the pair of strategies
(x , y) ∈ ∆n ×∆n is

P(x , y) = −x>My + c1(x)− c2(x , y),

given by the sum of:
the opposite of a term describing the “proximity” between x
and y in the graph, with M ∈ Rn×n is the matrix defined as
Mij = 1 if i = j or {i , j} ∈ E , and Mij = 0 otherwise
the quadratic costs that player 1 has to pay to deploy his
resources on the graph: c1(x) = 1

2x
>Q1x + q>1 x

the opposite of the quadratic costs that player 2 has to pay to
deploy her resources on the graph, and that is influenced by
player 1 strategy: c2(x , y) = 1

2y
>Q2(x)y + q>2 y .



27/ 31

Introduction Dual approach Cutting plane approach Applications

This zero-sum game can then be written as

min
x∈∆n

max
y∈∆n

− x>My +
1
2
x>Q1x + q>1 x − 1

2
y>Q2(x)y − q>2 y



28/ 31

Introduction Dual approach Cutting plane approach Applications

Bilevel formulation

From player 1’s perspective, this problem can be cast as the
following bilevel formulation:

Bilevel formulation

min
x ,v

v

s.t.
n∑

i=1
xi = 1

v ≥ max
y∈∆n

−x>My + 1
2x
>Q1x + q>1 x − 1

2y
>Q2(x)y − q>2 y

x ∈ Rn
+, v ∈ R.
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Bilevel formulation

From player 1’s perspective, this problem can be cast as the
following bilevel formulation:

Bilevel formulation

min
x ,v

v

s.t.
n∑

i=1
xi = 1

−v + 1
2x
>Q1x + q>1 x ≤ min

y∈∆n

1
2y
>Q2(x)y + (q2 + M>x)>y

x ∈ Rn
+, v ∈ R.
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Dual restriction/reformulation

Q not PSD for all feasible x =⇒ we obtain an upper bound of the
BP.

min
x ,v ,λ,α,β

v

s.t.
n∑

i=1
xi = 1

−v + 1
2x
>Q1x + q>1 x ≤ −λ1 − 2α− β

1
2

(
Q2(x) + 2αIn q2 + M>x −

n+2∑
j=3

λj ej + (λ1 − λ2)1

(q2 + M>x −
n+2∑
j=3

λj ej + (λ1 − λ2)1)> 2(β + α)

)
� 0

x ∈ Rn
+, v ∈ R

λ ∈ Rn+2
+ , α ∈ R+, β ∈ R,
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KKT relaxation/reformulation

Q not PSD for all x =⇒ we obtain a lower bound of the BP

min
x ,v ,y ,γ1,γ2

v

s.t.
n∑

i=1
xi = 1

−v + 1
2x
>Q1x + q>1 x ≤ 1

2y
>Q2(x)y + (q2 + M>x)>y

n∑
i=1

yi = 1

Q2(x)y + q2 + M>x + γ11− Inγ2 = 0
−γ>2 (Iny) = 0

x ∈ Rn
+, v ∈ R, y ∈ Rn

+, γ1 ∈ R, γ2 ∈ Rn
+.
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Thanks for your
attention!
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