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Bilevel programming

i 76, 7)
s.t. G(x,y) <0
y € argmin{f(x,y)|g(x,y") <0}
y
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Optimal value function transformation

One way to reformulate the bilevel problem is considering the
so-called optimal value function of the lower-level problem:

(x) = min{f(x.y")lg(x.y") < 0},

obtaining:
Optimal value reformulation
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KKT transformation

If the lower level problem is convex, and a regularity condition as
Slater's condition (or, equivalently, the (MFCQ)) is satisfied at all
feasible points, it can be replaced by its KKT conditions, obtaining:

min F(x,y)
X7y

s.t. G(x,y) <0
V,f(x,y) + A V,g(x,y) =0
g(x,y) <0, A>0
)‘Tvyé’(X,)’) =0

If the lower level problem is not convex, this formulation is a
relaxation of the bilevel problem.



Our bilevel formulation

)
s.t. G(x) <0 (BP)

h(x) < min {2y Q()y + a(x) Tyl Ay < b}
yeRn -2
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Our bilevel formulation

2 T
s.t. G(x) <0

h(x) < min {2y T Q(x)y + q(x)Ty|Ay < b}
yeRn -2
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(BP)

@ no argmin operator but an inequality constraint that links the

upper and the lower-level problems

e only the variable x in the upper level; F(x), G(x), h(x)

continuous in x

@ a quadratic lower-level problem P, with a feasible set F =
{yeR": Ay <bl={yeR":aly<b,Vj=1,...,r},

which is assumed not to depend on x
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Our bilevel formulation

o P
s.t. G(x)<0
h(x) < min {= 5y Q()y +a(x)"y|Ay < b}

yeR”
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(BP)

@ no argmin operator but an inequality constraint that links the

upper and the lower-level problems
This class of programs arises in many applications requiring sem
programming (SIP) problems, i.e. optimization problems with a

i-infinite
finite

number of variables and an infinite number of parametrized constraints of
the type Vy € Y, 0 < f(x,y). In fact, if this is the case, it is sufficient to
impose that this inequality holds for the minimum over all y € Y of

j(X,y) in the OHOWi g way:
=y IY (X7.y)7

reformulating the SIP program into a bilevel problem.

(1)
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Our bilevel formulation

)
s.t. G(x)<0

h(x) < min {2y T Q(x)y + q(x)Ty|Ay < b}
yeRn -2
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(BP)

@ no argmin operator but an inequality constraint that links the

upper and the lower-level problems

@ only the variable x in the upper level; F(x), G(x), h(x)

continuous in x

@ a quadratic lower-level problem P, with a feasible set F =
{yeR":Ay <b}={yeR":aly <b,Vj=1,...,r},

which is assumed not to depend on x
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Our bilevel formulation

2 T
s.t. G(x) <0

h(x) < min {2y T Q(x)y + q(x)Ty|Ay < b}
yeRn 2
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(BP)

@ no argmin operator but an inequality constraint that links the

upper and the lower-level problems

@ only the variable x in the upper level; F(x), G(x), h(x)

continuous in x

@ a quadratic lower-level problem P, with a feasible set F =
{yeR":Ay<b}={yeR":aly<b,Vj=1,...,r},

which is assumed not to depend on x



Dual approach
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SDP reformulation of the LL

Assumption

The LL feasible set
F={yeR": Ay < b}:{yeR”:aJ-TySbj,ijl,...,r}

is compact and included in the centered h-ball with radius p > 0,
which is known. )

We define the following matrices:

10() 90
° Ox) = <2q§§§) : )

0, %
O-Aj:<ajT ;), ijl,...,r.
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SDP reformulation of the LL

With this notation, under Assumption 1, the problem

min (Q(x),Y)
Y cR(n+1)x (n+1)
s.t. (A;,Y) < b, Vi=1,...,r
Tr(Y) < 1+ p?
Yn+1,n+1 =1
Y = 0
rank(Y) = 1

is an exact reformulation of the quadratic lower level Py, because

=
any feasible matrix Y has the form Y = <)1/> <}1/> with y € F
such that (Q(x), Y) = f(x,y).
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SDP reformulation/relaxation of the LL

If we relax the non-convex constraint rank(Y) = 1 we obtain:

min (Q(x),Y)

Y eR(n+1)x(n+1)

s.t. (.Aj, Y> < bj, Vi=1,...,r
Tr(Y) < 1+p°
Yn+1,n+1 =1
Y = 0

It is a relaxation of the quadratic problem P, (we define it SDP,).
It is a reformulation of Py if Q = 0, despite the relaxation of the
rank constraint.
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SDP dual of SDP,

Let E be a (n+ 1) x (n+ 1) matrix such that

1 fi=j=n+1
Y710 otherwise

and /41 the identity matrix of size (n+ 1) x (n+1). The

following SDP problem:

max —bTA —a(l+ p?)—
AER’ , a€Ry, BER ( p) b

Applications
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s.t. Q(x) + >> NAj + alpy1 + BE = 0,
j=1

is a dual problem of the problem (SDP;).

(DSDP,)
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Proof

The Lagrangian of the SDP problem is defined over Y € S (R),
ANeRL, aeRy, f€R and reads

L (Y, \ao,B) =
=(Q00), V) + 2 N (A, ¥) = Bl + a(Tr(Y) — 1 = P°) + B(Yasinia — 1)

r Aibj —a(l+p%) — B+ <Q(X) + 2’: NAj + alhy1 + BE, Y> :
2 =

Jj=1
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Proof

The Lagrangian of the SDP problem is defined over Y € Sn+1( ),
AeRL, aeRy, B €R and reads
LX(Y7>\7aaﬂ) =
=(Q(x),Y) + 21 N (A7, Y) = )] + a(Tr(Y) = 1 = p?) + B(Yasrni1 — 1)
=
— — S Nb—a(l+ %) - B+ <Q(X) + 3O NA; + @l + BE, Y>»
j=1

=1
And its Lagrangian dual problem:

max min  L(Y,\ «, B).
AERL  vest,(®)
acRy
BER
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Proof

The Lagrangian of the SDP problem is defined over Y € S (R),
AeRL, aeRy, f€Rand reads

L(Y,\a,B)=
=(Q(x),Y) + ;1 D (A, Y) = )] + (Tr(Y) = 1 = p?) + B(Vasrna1 — 1)
= — i )\jbj — Ot(l +p2) — ﬁ‘l‘ <Q(X) + i )\J'Aj + alpi1 -i-,BE, Y> .

And its Lagrangian dual problem:

2
max | — Z)\jbj+a(1+p )+ 8 m+|n Q(X)+Z)\jAj+Ckln+1+ﬂE7Y
AERY j=1 Y€5n+1( ) j=1
acRy
BER
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Proof

The Lagrangian of the SDP problem is defined over Y € S (R),
AeRL, aeRy, f€Rand reads

L(Y,\a,B)=
=(Q(x),Y) + ;1 D (A, Y) = )] + (Tr(Y) = 1 = p?) + B(Vasrna1 — 1)
= — i )\jbj — Ot(l +p2) — ﬁ‘l‘ <Q(X) + i )\J'Aj + alpi1 -i-,BE, Y> .

And its Lagrangian dual problem:

max < <Z)\jbj+a(1 + %) +5> + | _min <Q(X)+Z>\jv4/+a/n+1 + BE, Y>>

— Yes, 1(R) —
aERy J=1 mt J=1
BER
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Proof

To prove strong duality, we prove that Slater condition holds for the
dual problem

b — 2y _
AER;,$§§+,56R biA=—all+77) =5
s.t. Q(x) + >> NAj + alpy1 + BE = 0,
j=1

(DSDP,)
We denote by my the minimum eigenvalue of Q(x). By definition
of my, matrix Q(x) + (1 — my)Ilp+1 is positive definite. This is why
(0,1 — my,0) is a strictly feasible point of (DSDPy), i.e. Slater
condition holds.
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Primal-dual pair of the SDP reformulation/relaxation

Primal problem - SDP, Dual problem - DSDP,
Ry (6 max  —b"A-a(l+p?) -8
s.t. <Aj7 Y> < ij V_] aGR:
Tr(Y) < 1492 pER s
Yn+1,n+1 = 1 s.t. Q(X) + Z )\JAJ =+ al,,+1 + ,BE t 0
1% = 0 =
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Primal-dual pair of the SDP reformulation/relaxation

Primal problem - SDP, Dual problem - DSDP,
Ry (6 max  —b"A-a(l+p?) -8
s.t. <Aj7 Y> < ij VJ aGR:
Tr(Y) < 1492 pER s
Yn+1,n+1 = 1 s.t. Q(X) + Z )\JAJ =+ al,,+1 + ,BE i 0
1% = 0 =

val(SDP,) < val(Px) val(SDP,) = val(DSDP;)
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Primal-dual pair of the SDP reformulation/relaxation

Primal problem - SDP, Dual problem - DSDP,
ygm(mii-)nX(HJrl) <Q(X)7 Y> {2?5,( 7bT)\ o a(l +p2) . ,6
s.t. <Aj7 Y> < ij VJ aGR:
T(Y) < 14p7 | ed ,
Yn+1,n+1 = 1 s.t. Q(X) + Z )\JAJ =+ al,,+1 + ,BE i 0
Y = 0 j=1
val(SDP,) < val(Px) val(SDP,) = val(DSDP;)

h(x) < val(DSDP,) <= h(x) < val(SDPy) = h(x) < val(Px)
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Primal-dual pair of the SDP reformulation/relaxation

Primal problem - SDP, Dual problem - DSDP,
Ry (6 max  —b"A-a(l+p?) -8
s.t. (A, Y) < b, Y| aerl
Tr(Y) < 1407 pek r
Yn+1,n+1 = 1 s.t. Q(X) =+ Z )\JAJ =+ al,,+1 + ,BE i 0
Y = 0 j=1
val(SDP,) =val(Py) val(SDP,) = val(DSDP;)

h(x) < val(DSDP,) <= h(x) < val(SDP,) <= h(x) < val(Px)

If Q(x) > 0 for all feasible x



Our bilevel formulation

min  F(x)
xERM
st. G(x) <0

h(x) < val(Px)
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An important step

A restriction/reformulation

min  F(x)
xeRm
st. G(x) <0

h(x) < val(DSDP)

because either

Applications
0000000000000

h(x) < val(DSDP,) <= h(x) < val(SDP,) = h(x) < val(Px)

or

h(x) < val(DSDPy) <= h(x) < val(SDP,) <= h(x) < val(Px)
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Cutting plane approach
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An important step

A restriction/reformulation

min  F(x)
xeRm
st. G(x) <0
h(x) < gn%x{—bT)\ —a(l+p?) -3
=

acR4
BER

j=1

Applications
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Q(x) + i‘ NAj + alpy1 + BE = 0}
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An important step

A restriction /reformulation

o P

st. G(x) <0
h(x) < rAn%g({—bT)\ —a(l+p%) -8
ERy

«eR,
j=1
We can replace it by:
h(x) < —=b"A — a1+ p?) -8
Q(x) + }r:l)\j/lj + a1+ BE >0
j=

Applications
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et Q) + X AjAj + alpia + BE = 0}
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SDP restriction/reformulation of our BP

Given the lower-level dual variables A, o, 8:
min

X, A\, F(X)
st. G(x)<0

h(x) < =ATh—a(l+p?) - p
Q(x) +Zj )\jAj+aln+1 +BE =0
xeRMAeR,, acR,B€R

(BPR)

We remark that the single-level problem (BPR)
@ is convex if Q(x) and g(x) depend on x linearly, while F(x), G(x) and
h(x) are convex,
@ is a SDP problem if Q(x) and g(x) depend on x linearly, while F(x),

G(x) and h(x) are convex and semidefinite representable.
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Cutting plane approach
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Cutting plane approach

1: Let k = 1. Initialize the relaxation Ry of the bilevel problem
(BP), obtained by considering the upper-level problem only.

2: while true do
3. Solve Ry, obtaining the optimal solution x*.
4:  Compute an optimal solution y* of the LL problem for x = x*.
5. if h(x*) <30T QU )y + q(x*) Ty then
6: The algorithm terminates and (x*, y*) is the optimal solu-
tion of the bilevel formulation.
7. else
8: Define Ri11 as Rk with the adjoined inequality:
he) < 504 QY +alx) "
9: k=k+1
10: end if

11: end while




Applications



Dual approach Cutting plane approach Applications
OOOOOOOOO oo O@®0000000000000

Constrained Quadratic
Regression



1 —
z=§WTQW—|—c7Tw+E+e
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1 -
z=§WTQW—|—c7Tw+E+e

@ w € R" features vector
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Constrained Quadratic Regression

1 +.
Z=§WTQW+E;Tw+E+e

@ w € R" features vector

o z € R output

19/ 31
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Constrained Quadratic Regression

1 .-
z=-w' Qw+§ wt+ite

2
o w € R" features vector
e z € R output
o QER™st. Q=QT
e geR”
eCceR
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Constrained Quadratic Regression

1 -
z=-w' Qw+§ w+ite

2
o w € R" features vector
e z € R output
o QER™st. Q=QT
e geR”
eceR
o ¢ ~ N(0,0%) Gaussian error
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Constrained Quadratic Regression

1 .-
z:EWTQW+c‘1TW+E+e

e w € R" features vector

@ z € R output

e QeR™"st. Q=QT

e gcR”

ecelR

e ¢ ~ N(0,02%) Gaussian error

Let us suppose that the parameters of this model are unknown, but
we are given a dataset (w;, zj)1<j<p € (R" x R)”.
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Constrained quadratic regression problem

Problem:
finding the maximum likelihood estimator for Q € R™*", g€ R", €€ R

I

computing the triplet (Q, g, c) € R™" x R"” x R that minimizes the
P

least-squares error 3 (z; — 2w/ Qw; — q"w; — ¢)*.
p
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Constrained quadratic regression problem

Problem:
finding the maximum likelihood estimator for Q € R™*", g€ R", €€ R

I

computing the triplet (Q, g, c) € R™" x R"” x R that minimizes the
P

least-squares error 3 (z; — 2w/ Qw; — q"w; — ¢)*.
p

@ the features vector belongs to a given polytope F C R"

@ the noiseless value %yT@y +G'y + C is non-negative for any
yeF
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Problem formulation

Semi-infinite formulation Bilevel formulation

P
min > (zi — tw/ Qwi — q"wi — ¢)?
Q.q,c =1
R=Q"
yTQy+q’y+c>0,

s.t.
Vy € F

QeER™ geR", ceR.

Cutting plane approach

oo

»9q,C

s.t.

Applications
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P

> (zi —

i=1

R=Q"

infi,7T T >
;nelg{zy Qr+qyt>—c

1T T 2
sw; Qw; —q'w; —c)

QeR™ geR" ceR.
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Dual restriction/reformulation

Q@ not PSD = we obtain an upper bound of the BP

P
. LT Ow — AT — )2
Q,qT,IAn,a,ﬁ I;(z, 5w, Qw; —q ' w; —¢)
st. Q=QT

“ATh—a(l+p?)—B>—c

1 Q+2a/n q > 4

= +3 NA; =0

2( qT Q(ﬁ—i-oé) J;JJ—
QeR™ qgeR" ceR
AeR, aeRy,B€R.

In general, it is a restriction of the original bilevel problem
formulation since @ may not necessarily be PSD.
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KKT relaxation/reformulation

Q@ not PSD = we obtain a lower bound of the BP

P

min > (zi — %W,-TQW; — qTW,- — c)2
Q,q,c.yY =1

st. Q=QT
' Q+qly>—c
Ay <b
Q/+g+ATy=0
Y (Ay —b) =0
RQeR™" qeR" ceR, yeR", yeR],

In general, it is a relaxation of the original bilevel problem
formulation since @ may not necessarily be PSD.
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Zero-sum game with
quadratic payoff



Introduction Dual approach Cutting plane approach Applications
0000 000000000 oo 000000008000000

Zero-sum game with quadratic payoff

Let us consider an undirected graph G = (V/, E) (with n = |V/]).
Each player positions a resource on each node i € V. After
normalization, we can consider that the action set of both players is

Ap={xeRy : > x =1}
i=1

2 players zero-sum _game: Pi(x,y) = —Pa(x,y), being Pi(x,y) the
payoff of player i related to the pair of strategies (x, y).
— We need to specify just one game payoff P(x,y)
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Game payoff

The game payoff P(x, y) related to the pair of strategies
(x,y) € Ay x Apis

P(X7y) = _XTMy+ Cl(X) - C2(X7.y)7

given by the sum of:
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Game payoff

The game payoff P(x, y) related to the pair of strategies
(x,y) € Ay x Apis

P(X7y) = 7XTMy + Cl(X) - C2(X7.y)7

given by the sum of:
@ the opposite of a term describing the “proximity” between x
and y in the graph, with M € R™" is the matrix defined as
Mj=1ifi=jor{ij} € E, and Mj; = 0 otherwise
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Game payoff

The game payoff P(x, y) related to the pair of strategies
(x,y) € Ay x Apis

P(X7y) = _XTMy+ Cl(X) - C2(X7.y)7

given by the sum of:

@ the opposite of a term describing the “proximity” between x
and y in the graph, with M € R™" is the matrix defined as
Mj=1ifi=jor{ij} € E, and M;; = 0 otherwise

@ the quadratic costs that player 1 has to pay to deploy his
resources on the graph: c1(x) = 3x ' Qux + q{ x



Introduction Dual approach Cutting plane approach Applications
0000 000000000 oo 000000000®00000

Game payoff

The game payoff P(x, y) related to the pair of strategies
(x,y) € Ay x Apis

P(X7y) = _XTMy + Cl(X) - C2(X7.y)7

given by the sum of:

@ the opposite of a term describing the “proximity” between x
and y in the graph, with M € R™" is the matrix defined as
Mj=1ifi=jor{ij} € E, and M;; = 0 otherwise

@ the quadratic costs that player 1 has to pay to deploy his
resources on the graph: ci(x) = 2x" Qix + ¢{ x

@ the opposite of the quadratic costs that player 2 has to pay to
deploy her resources on the graph, and that is influenced by
player 1 strategy: ca(x,y) = 3y Q(x)y + a3 y.



This zero-sum game can then be written as

_ 1 1
min max —x'My + -x"Qix+qf x — Zy " Q(x)y — g2 y
xEAnyEA, 2 2

27/ 31
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Bilevel formulation

From player 1's perspective, this problem can be cast as the
following bilevel formulation:

Bilevel formulation

min v
X,V
n
s.t. Z xi=1
i=1
v > max —xT/\/Iy aF %XTle + qlTX — %yTQz(X)y - q;y

yEA,
xeRl, veR
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Bilevel formulation

From player 1's perspective, this problem can be cast as the
following bilevel formulation:

Bilevel formulation

min v

X,V
n

s.t. Z xi=1
i=1

v+ LXTQix + ¢ x < mip 37 Q(X)y + (@ +M'x)Ty

xeRY, veR
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Dual restriction/reformulation

Q not PSD for all feasible x = we obtain an upper bound of the

BP.

min
X1V7A1a7/6

s.t.

v

n

ZX,' =1
i=1

—v 4+ xTle—l—q1x< A1 —2a—p

n+2
1 Q2(x) + 2a, g2+ M x— 3 Aej+ (A1 — A2)1
j=3
5 T n+2 T i 0
(g2 +MTx — _Esxjeﬁ(xl —A2)1) 2(8+a)
=

xeRl, veR
AERT? ae Ry, BER,
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KKT relaxation/reformulation

Q@ not PSD for all x = we obtain a lower bound of the BP

min v
X, VLYy71,72

n
s.t. Zx,-:l
—v+ IXTQux+a{x < 3yTQ(x)y + (@2 + M™x)Ty
Z}/izl
,521(X)y + g+ MIx+mnl— Iy =0
_VJ(InY):O
xeRl, veR, yeR}, 11 €R, » eR].
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Thanks for your
attention!
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