Two approaches to solve a particular class of bilevel problems

Joint work with Antoine Oustry, Claudia D'Ambrosio, Leo Liberti

Martina Cerulli

mcerulli@lix.polytechnique.fr

LIX - École polytechnique - CNRS
March 2, 2021

Bilevel programming

$$
\begin{aligned}
& \min _{x, y} F(x, y) \\
& \text { s.t. } G(x, y) \leq 0 \\
& \quad y \in \arg \min _{y^{\prime}}\left\{f\left(x, y^{\prime}\right) \mid g\left(x, y^{\prime}\right) \leq 0\right\}
\end{aligned}
$$

Optimal value function transformation

One way to reformulate the bilevel problem is considering the so-called optimal value function of the lower-level problem:

$$
\varphi(x)=\min _{y^{\prime}}\left\{f\left(x, y^{\prime}\right) \mid g\left(x, y^{\prime}\right) \leq 0\right\}
$$

obtaining:

Optimal value reformulation

$$
\left.\begin{array}{rl}
\min _{x, y} & F(x, y) \\
\text { s.t. } & G(x, y)
\end{array}\right) \leq 0 \quad \begin{aligned}
g(x, y) & \leq 0 \\
f(x, y) & \leq \varphi(x)
\end{aligned}
$$

KKT transformation

If the lower level problem is convex, and a regularity condition as Slater's condition (or, equivalently, the (MFCQ)) is satisfied at all feasible points, it can be replaced by its KKT conditions, obtaining:

$$
\begin{aligned}
& \min _{x, y} F(x, y) \\
& \text { s.t. } G(x, y) \leq 0 \\
& \nabla_{y} f(x, y)+\lambda^{\top} \nabla_{y} g(x, y)=0 \\
& g(x, y) \leq 0, \quad \lambda \geq 0 \\
& \quad \lambda^{\top} \nabla_{y} g(x, y)=0
\end{aligned}
$$

If the lower level problem is not convex, this formulation is a relaxation of the bilevel problem.

Our bilevel formulation

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{m}} & F(x) \\
\text { s.t. } & G(x) \leq 0 \\
& h(x) \leq \min _{y \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} y^{\top} Q(x) y+q(x)^{\top} y \right\rvert\, A y \leq b\right\}
\end{array}
$$

$$
(B P)
$$

Our bilevel formulation

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{m}} & F(x) \\
\text { s.t. } & G(x) \leq 0 \\
& h(x) \leq \min _{y \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} y^{\top} Q(x) y+q(x)^{\top} y \right\rvert\, A y \leq b\right\}
\end{array}
$$

- no argmin operator but an inequality constraint that links the upper and the lower-level problems
- only the variable x in the upper level; $F(x), G(x), h(x)$ continuous in x
- a quadratic lower-level problem P_{x} with a feasible set $\mathcal{F}=$ $\left\{y \in \mathbb{R}^{n}: A y \leq b\right\}=\left\{y \in \mathbb{R}^{n}: a_{j}^{T} y \leq b_{j}, \forall j=1, \ldots, r\right\}$, which is assumed not to depend on x

Our bilevel formulation

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{m}} & F(x) \\
\text { s.t. } & G(x) \leq 0 \\
& h(x) \leq \min _{y \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} y^{\top} Q(x) y+q(x)^{\top} y \right\rvert\, A y \leq b\right\}
\end{array}
$$

- no argmin operator but an inequality constraint that links the upper and the lower-level problems
This class of programs arises in many applications requiring semi-infinite programming (SIP) problems, i.e. optimization problems with a finite number of variables and an infinite number of parametrized constraints of the type $\forall y \in Y, 0 \leq f(x, y)$. In fact, if this is the case, it is sufficient to impose that this inequality holds for the minimum over all $y \in Y$ of $f(x, y)$ in the following way:

$$
\begin{equation*}
0 \leq \min _{y \in Y} f(x, y), \tag{1}
\end{equation*}
$$

reformulating the SIP program into a bilevel problem.

Our bilevel formulation

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{m}} & F(x) \\
\text { s.t. } & G(x) \leq 0 \\
& h(x) \leq \min _{y \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} y^{\top} Q(x) y+q(x)^{\top} y \right\rvert\, A y \leq b\right\}
\end{array}
$$

- no argmin operator but an inequality constraint that links the upper and the lower-level problems
- only the variable x in the upper level; $F(x), G(x), h(x)$ continuous in x
- a quadratic lower-level problem P_{x} with a feasible set $\mathcal{F}=$ $\left\{y \in \mathbb{R}^{n}: A y \leq b\right\}=\left\{y \in \mathbb{R}^{n}: a_{j}^{T} y \leq b_{j}, \forall j=1, \ldots, r\right\}$, which is assumed not to depend on x

Our bilevel formulation

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{m}} & F(x) \\
\text { s.t. } & G(x) \leq 0 \\
& h(x) \leq \min _{y \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} y^{\top} Q(x) y+q(x)^{\top} y \right\rvert\, A y \leq b\right\}
\end{array}
$$

- no argmin operator but an inequality constraint that links the upper and the lower-level problems
- only the variable x in the upper level; $F(x), G(x), h(x)$ continuous in x
- a quadratic lower-level problem P_{x} with a feasible set $\mathcal{F}=$ $\left\{y \in \mathbb{R}^{n}: A y \leq b\right\}=\left\{y \in \mathbb{R}^{n}: a_{j}^{T} y \leq b_{j}, \forall j=1, \ldots, r\right\}$, which is assumed not to depend on x

Dual approach

SDP reformulation of the LL

Assumption

The LL feasible set

$$
\mathcal{F}=\left\{y \in \mathbb{R}^{n}: A y \leq b\right\}=\left\{y \in \mathbb{R}^{n}: a_{j}^{T} y \leq b_{j}, \forall j=1, \ldots, r\right\}
$$

is compact and included in the centered I_{2}-ball with radius $\rho>0$, which is known.

We define the following matrices:

- $\mathcal{Q}(x)=\left(\begin{array}{ll}\frac{1}{2} Q(x) & \frac{q(x)}{2} \\ \frac{q(x)^{T}}{2} & 0\end{array}\right)$,
- $\mathcal{A}_{j}=\left(\begin{array}{cc}0_{n} & \frac{a_{j}}{2} \\ \frac{a_{j}^{T}}{2} & 0\end{array}\right), \quad \forall j=1, \ldots, r$.

SDP reformulation of the LL

With this notation, under Assumption 1, the problem

$$
\begin{array}{cll}
\min _{Y \in \mathbb{R}^{(n+1) \times(n+1)}} & \langle\mathcal{Q}(x), Y\rangle & \\
\text { s.t. } & \left\langle\mathcal{A}_{j}, Y\right\rangle & \leq b_{j}, \quad \forall j=1, \ldots, r \\
& \operatorname{Tr}(Y) & \leq 1+\rho^{2} \\
& Y_{n+1, n+1}=1 \\
& Y & \succeq 0 \\
& \operatorname{rank}(Y) & =1
\end{array}
$$

is an exact reformulation of the quadratic lower level P_{x}, because any feasible matrix Y has the form $Y=\binom{y}{1}\binom{y}{1}^{\top}$ with $y \in \mathcal{F}$ such that $\langle\mathcal{Q}(x), Y\rangle=f(x, y)$.

SDP reformulation/relaxation of the LL

If we relax the non-convex constraint $\operatorname{rank}(Y)=1$ we obtain:

$$
\begin{array}{|lll}
\min _{Y \in \mathbb{R}^{(n+1) \times(n+1)}} & \langle\mathcal{Q}(x), Y\rangle & \\
\text { s.t. } & \left\langle\mathcal{A}_{j}, Y\right\rangle & \leq b_{j} \\
& \operatorname{Tr}(Y) & \leq 1 \\
& Y_{n+1, n+1}=1 \\
& V & \succ
\end{array}
$$

It is a relaxation of the quadratic problem P_{x} (we define it $S D P_{x}$). It is a reformulation of P_{x} if $Q \succeq 0$, despite the relaxation of the rank constraint.

SDP dual of $S D P_{x}$

Let E be a $(n+1) \times(n+1)$ matrix such that

$$
E_{i j}=\left\{\begin{array}{rr}
1 & \text { if } i=j=n+1 \\
0 & \text { otherwise }
\end{array}\right.
$$

and I_{n+1} the identity matrix of size $(n+1) \times(n+1)$. The following SDP problem:

$$
\begin{array}{cl}
\max _{\lambda \in \mathbb{R}_{+}^{r}, \alpha \in \mathbb{R}_{+}, \beta \in \mathbb{R}} & -b^{\top} \lambda-\alpha\left(1+\rho^{2}\right)-\beta \\
\text { s.t. } & \mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E \succeq 0
\end{array}
$$

$\left(D S D P_{x}\right)$
is a dual problem of the problem $\left(S D P_{x}\right)$.

Proof

The Lagrangian of the SDP problem is defined over $Y \in S_{n+1}^{+}(\mathbb{R})$, $\lambda \in \mathbb{R}_{+}^{r}, \alpha \in \mathbb{R}_{+}, \beta \in \mathbb{R}$ and reads

$$
\begin{aligned}
& L_{x}(Y, \lambda, \alpha, \beta)= \\
& =\langle\mathcal{Q}(x), Y\rangle+\sum_{j=1}^{r}\left[\lambda_{j}\left(\left\langle\mathcal{A}_{j}, Y\right\rangle-b_{j}\right)\right]+\alpha\left(\operatorname{Tr}(Y)-1-\rho^{2}\right)+\beta\left(Y_{n+1, n+1}-1\right) \\
& =-\sum_{j=1}^{r} \lambda_{j} b_{j}-\alpha\left(1+\rho^{2}\right)-\beta+\left\langle\mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E, Y\right\rangle .
\end{aligned}
$$

Proof

The Lagrangian of the SDP problem is defined over $Y \in S_{n+1}^{+}(\mathbb{R})$, $\lambda \in \mathbb{R}_{+}^{r}, \alpha \in \mathbb{R}_{+}, \beta \in \mathbb{R}$ and reads

$$
\begin{aligned}
& L_{x}(Y, \lambda, \alpha, \beta)= \\
& =\langle\mathcal{Q}(x), Y\rangle+\sum_{j=1}^{r}\left[\lambda_{j}\left(\left\langle\mathcal{A}_{j}, Y\right\rangle-b_{j}\right)\right]+\alpha\left(\operatorname{Tr}(Y)-1-\rho^{2}\right)+\beta\left(Y_{n+1, n+1}-1\right) \\
& =-\sum_{j=1}^{r} \lambda_{j} b_{j}-\alpha\left(1+\rho^{2}\right)-\beta+\left\langle\mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E, Y\right\rangle .
\end{aligned}
$$

And its Lagrangian dual problem:

$$
\max _{\substack{\lambda \in \mathbb{R}_{+}^{r} \\ \alpha \in \mathbb{R}_{+} \\ \beta \in \mathbb{R}^{\prime}}} \min _{Y \in S_{n+1}^{+}} \operatorname{RR}^{(\mathbb{R})}, ~ L_{x}(Y, \lambda, \alpha, \beta)
$$

Proof

The Lagrangian of the SDP problem is defined over $Y \in S_{n+1}^{+}(\mathbb{R})$, $\lambda \in \mathbb{R}_{+}^{r}, \alpha \in \mathbb{R}_{+}, \beta \in \mathbb{R}$ and reads

$$
\begin{aligned}
& L_{x}(Y, \lambda, \alpha, \beta)= \\
& =\langle\mathcal{Q}(x), Y\rangle+\sum_{j=1}^{r}\left[\lambda_{j}\left(\left\langle\mathcal{A}_{j}, Y\right\rangle-b_{j}\right)\right]+\alpha\left(\operatorname{Tr}(Y)-1-\rho^{2}\right)+\beta\left(Y_{n+1, n+1}-1\right) \\
& =-\sum_{j=1}^{r} \lambda_{j} b_{j}-\alpha\left(1+\rho^{2}\right)-\beta+\left\langle\mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E, Y\right\rangle .
\end{aligned}
$$

And its Lagrangian dual problem:
$\max _{\substack{\lambda \in \mathbb{R}_{+}^{r} \\ \alpha \in \mathbb{R}_{+}^{+}}}\left(-\left(\sum_{j=1}^{r} \lambda_{j} b_{j}+\alpha\left(1+\rho^{2}\right)+\beta\right)+\min _{\gamma \in S_{n+1}^{r}(\mathbb{R})}\left\langle\mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E, \gamma\right\rangle\right)$ $\beta \in \mathbb{R}$

Proof

The Lagrangian of the SDP problem is defined over $Y \in S_{n+1}^{+}(\mathbb{R})$, $\lambda \in \mathbb{R}_{+}^{r}, \alpha \in \mathbb{R}_{+}, \beta \in \mathbb{R}$ and reads

$$
\begin{aligned}
& L_{x}(Y, \lambda, \alpha, \beta)= \\
& =\langle\mathcal{Q}(x), Y\rangle+\sum_{j=1}^{r}\left[\lambda_{j}\left(\left\langle\mathcal{A}_{j}, Y\right\rangle-b_{j}\right)\right]+\alpha\left(\operatorname{Tr}(Y)-1-\rho^{2}\right)+\beta\left(Y_{n+1, n+1}-1\right) \\
& =-\sum_{j=1}^{r} \lambda_{j} b_{j}-\alpha\left(1+\rho^{2}\right)-\beta+\left\langle\mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E, Y\right\rangle .
\end{aligned}
$$

And its Lagrangian dual problem:
$\max _{\substack{\lambda \in \mathbb{R}_{+}^{r} \\ \alpha \in \mathbb{R}_{+}}}\left(-\left(\sum_{j=1}^{r} \lambda_{j} b_{j}+\alpha\left(1+\rho^{2}\right)+\beta\right)+\min _{\substack{ \\Y \in S_{n+1}^{+}(\mathbb{R})}} \mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E, Y\right)$

Proof

To prove strong duality, we prove that Slater condition holds for the dual problem

$$
\begin{array}{cl}
\max _{\lambda \in \mathbb{R}_{+}^{r}, \alpha \in \mathbb{R}_{+}, \beta \in \mathbb{R}} & -b^{\top} \lambda-\alpha\left(1+\rho^{2}\right)-\beta \\
\text { s.t. } & \mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E \succeq 0
\end{array}
$$

We denote by m_{x} the minimum eigenvalue of $\mathcal{Q}(x)$. By definition of m_{x}, matrix $\mathcal{Q}(x)+\left(1-m_{x}\right) I_{n+1}$ is positive definite. This is why $\left(0,1-m_{x}, 0\right)$ is a strictly feasible point of $\left(D S D P_{x}\right)$, i.e. Slater condition holds.

Primal-dual pair of the SDP reformulation/relaxation

Primal problem - $S D P_{x}$

$$
\begin{array}{cll}
\min _{Y \in \mathbb{R}^{(n+1) \times(n+\mathbf{1})}} & \langle\mathcal{Q}(x), Y\rangle & \\
\text { s.t. } & \left\langle\mathcal{A}_{j}, Y\right\rangle & \leq b_{j}, \quad \forall j \\
& \operatorname{Tr}(Y) & \leq 1+\rho^{2} \\
& Y_{n+1, n+1}=1 \\
& Y & \succeq 0
\end{array}
$$

Dual problem - $D S D P_{x}$

$$
\begin{array}{ll}
\max _{\substack{\lambda \in \mathbb{R}^{+} \\
\text {ser } \\
\beta \in \mathbb{R}}} & -b^{\top} \lambda-\alpha\left(1+\rho^{2}\right)-\beta \\
\text { s.t. } & \mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E \succeq 0
\end{array}
$$

Primal-dual pair of the SDP reformulation/relaxation

Primal problem $-S D P_{x}$

$$
\begin{array}{cll}
\min _{Y \in \mathbb{R}^{(n+1) \times(n+\mathbf{1})}} & \langle\mathcal{Q}(x), Y\rangle & \\
\text { s.t. } & \left\langle\mathcal{A}_{j}, Y\right\rangle & \leq b_{j}, \quad \forall j \\
& \operatorname{Tr}(Y) & \leq 1+\rho^{2} \\
& Y_{n+1, n+1} & =1 \\
& Y & \succeq 0
\end{array}
$$

$$
\operatorname{val}\left(S D P_{x}\right) \leq \operatorname{val}\left(P_{x}\right)
$$

Dual problem - $D S D P_{x}$

$$
\begin{array}{ll}
\max _{\substack{\lambda \in \mathbb{R}_{+}^{r} \\
\alpha \in \mathbb{R}_{+} \\
\beta \in \mathbb{R}}} & -b^{\top} \lambda-\alpha\left(1+\rho^{2}\right)-\beta \\
\text { s.t. } & \mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E \succeq 0
\end{array}
$$

$$
\operatorname{val}\left(S D P_{x}\right)=\operatorname{val}\left(D S D P_{x}\right)
$$

Primal-dual pair of the SDP reformulation/relaxation

Primal problem $-S D P_{x}$

$$
\begin{array}{cll}
\min _{Y \in \mathbb{R}^{(n+1) \times(n+1)}} & \langle\mathcal{Q}(x), Y\rangle & \\
\text { s.t. } & \left\langle\mathcal{A}_{j}, Y\right\rangle & \leq b_{j}, \quad \forall j \\
& \operatorname{Tr}(Y) & \leq 1+\rho^{2} \\
& Y_{n+1, n+1} & =1 \\
& Y & \succeq 0
\end{array}
$$

Dual problem - $D S D P_{x}$

$$
\begin{array}{ll}
\max _{\substack{\lambda \in \mathbb{R}_{+}^{r} \\
\alpha \in \mathbb{R}_{+} \\
\beta \in \mathbb{R}}} & -b^{\top} \lambda-\alpha\left(1+\rho^{2}\right)-\beta \\
\text { s.t. } & \mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E \succeq 0
\end{array}
$$

$$
\operatorname{val}\left(S D P_{x}\right) \leq \operatorname{val}\left(P_{x}\right)
$$

$$
\operatorname{val}\left(S D P_{x}\right)=\operatorname{val}\left(D S D P_{x}\right)
$$

Primal-dual pair of the SDP reformulation/relaxation

Primal problem - $S D P_{x}$

$$
\begin{array}{cll}
\min _{Y \in \mathbb{R}^{(n+1) \times(n+1)}} & \langle\mathcal{Q}(x), Y\rangle & \\
\text { s.t. } & \left\langle\mathcal{A}_{j}, Y\right\rangle & \leq b_{j}, \quad \forall j \\
& \operatorname{Tr}(Y) & \leq 1+\rho^{2} \\
& Y_{n+1, n+1} & =1 \\
& Y & \succeq 0
\end{array}
$$

Dual problem - $D S D P_{x}$

$$
\begin{array}{ll}
\max _{\substack{\lambda \in \mathbb{R}_{+}^{r} \\
\alpha \in \mathbb{R}_{+} \\
\beta \in \mathbb{R}^{\prime}}} & -b^{\top} \lambda-\alpha\left(1+\rho^{2}\right)-\beta \\
\text { s.t. } & \mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E \succeq 0
\end{array}
$$

$$
\operatorname{val}\left(S D P_{x}\right)=\operatorname{val}\left(P_{x}\right)
$$

$$
\operatorname{val}\left(S D P_{x}\right)=\operatorname{val}\left(D S D P_{x}\right)
$$

$$
h(x) \leq \operatorname{val}\left(D S D P_{x}\right) \Longleftrightarrow h(x) \leq \operatorname{val}\left(S D P_{x}\right) \Longleftrightarrow h(x) \leq \operatorname{val}\left(P_{x}\right)
$$

If $Q(x) \succeq 0$ for all feasible x

An important step

Our bilevel formulation

An important step

A restriction/reformulation

$$
\begin{array}{rll}
\min _{x \in \mathbb{R}^{m}} & F(x) & \\
\text { s.t. } & G(x) & \leq 0 \\
& h(x) \leq \operatorname{val}\left(D S D P_{x}\right)
\end{array}
$$

because either

$$
\begin{aligned}
h(x) \leq \operatorname{val}\left(D S D P_{x}\right) & \Longleftrightarrow h(x) \leq \operatorname{val}\left(S D P_{x}\right) \Longrightarrow h(x) \leq \operatorname{val}\left(P_{x}\right) \\
& \text { or } \\
h(x) \leq \operatorname{val}\left(D S D P_{x}\right) & \Longleftrightarrow h(x) \leq \operatorname{val}\left(S D P_{x}\right) \Longleftrightarrow h(x) \leq \operatorname{val}\left(P_{x}\right)
\end{aligned}
$$

An important step

A restriction/reformulation

$$
\begin{array}{cl}
\min _{x \in \mathbb{R}^{m}} & F(x) \\
\text { s.t. } & G(x) \leq 0 \\
& h(x) \leq \max _{\substack{\lambda \in \mathbb{R}_{+}^{r} \\
\alpha \in \mathbb{R}_{+} \\
\beta \in \mathbb{R}}} \mathcal{Q}(x)+\sum_{j=1}^{\top} \lambda-\alpha\left(1+\rho^{2}\right)-\beta: \\
&
\end{array}
$$

An important step

A restriction/reformulation

$$
\left.\begin{array}{ll}
\min _{x \in \mathbb{R}^{m}} & F(x) \\
\text { s.t. } & G(x)
\end{array}\right) \leq 0
$$

We can replace it by:

$$
\left.\begin{array}{c}
h(x) \leq-b^{\top} \lambda-\alpha\left(1+\rho^{2}\right)-\beta \\
\mathcal{Q}(x)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E \succeq 0 \tag{*}
\end{array}\right\}
$$

SDP restriction/reformulation of our BP

Given the lower-level dual variables λ, α, β :

$$
\begin{align*}
\min _{x, \lambda, \alpha, \beta} & F(x) \\
\text { s.t. } & G(x) \leq 0 \\
& h(x) \leq-\lambda^{\top} b-\alpha\left(1+\rho^{2}\right)-\beta \tag{BPR}\\
& \mathcal{Q}(x)+\sum_{j} \lambda_{j} \mathcal{A}_{j}+\alpha I_{n+1}+\beta E \succeq 0 \\
& x \in \mathbb{R}^{m}, \lambda \in \mathbb{R}_{+}^{r}, \alpha \in \mathbb{R}_{+}, \beta \in \mathbb{R}
\end{align*}
$$

We remark that the single-level problem (BPR)

- is convex if $Q(x)$ and $q(x)$ depend on x linearly, while $F(x), G(x)$ and $h(x)$ are convex,
- is a SDP problem if $Q(x)$ and $q(x)$ depend on x linearly, while $F(x)$, $G(x)$ and $h(x)$ are convex and semidefinite representable.

Cutting plane approach

Cutting plane approach

1: Let $k=1$. Initialize the relaxation R_{k} of the bilevel problem $(B P)$, obtained by considering the upper-level problem only.
: while true do
3: \quad Solve R_{k}, obtaining the optimal solution x^{k}.
4: Compute an optimal solution y^{k} of the LL problem for $x=x^{k}$.
5: if $h\left(x^{k}\right) \leq \frac{1}{2}\left(y^{k}\right)^{\top} Q\left(x^{k}\right) y^{k}+q\left(x^{k}\right)^{\top} y^{k}$ then
6: \quad The algorithm terminates and $\left(x^{k}, y^{k}\right)$ is the optimal solution of the bilevel formulation.
7: else
8: \quad Define R_{k+1} as R_{k} with the adjoined inequality:

$$
h(x) \leq \frac{1}{2}\left(y^{k}\right)^{\top} Q(x) y^{k}+q(x)^{\top} y^{k}
$$

9: $\quad k:=k+1$
10: end if
11: end while

Applications

Constrained Quadratic Regression

Constrained Quadratic Regression

$$
z=\frac{1}{2} w^{\top} \bar{Q} w+\bar{q}^{\top} w+\bar{c}+\epsilon
$$

Constrained Quadratic Regression

$$
z=\frac{1}{2} w^{\top} \bar{Q} w+\bar{q}^{\top} w+\bar{c}+\epsilon
$$

- $w \in \mathbb{R}^{n}$ features vector

Constrained Quadratic Regression

$$
z=\frac{1}{2} w^{\top} \bar{Q} w+\bar{q}^{\top} w+\bar{c}+\epsilon
$$

- $w \in \mathbb{R}^{n}$ features vector
- $z \in \mathbb{R}$ output

Constrained Quadratic Regression

$$
z=\frac{1}{2} w^{\top} \bar{Q} w+\bar{q}^{\top} w+\bar{c}+\epsilon
$$

- $w \in \mathbb{R}^{n}$ features vector
- $z \in \mathbb{R}$ output
- $\bar{Q} \in \mathbb{R}^{n \times n}$ s.t. $\bar{Q}=\bar{Q}^{\top}$
- $\bar{q} \in \mathbb{R}^{n}$
- $\bar{c} \in \mathbb{R}$

Constrained Quadratic Regression

$$
z=\frac{1}{2} w^{\top} \bar{Q} w+\bar{q}^{\top} w+\bar{c}+\epsilon
$$

- $w \in \mathbb{R}^{n}$ features vector
- $z \in \mathbb{R}$ output
- $\bar{Q} \in \mathbb{R}^{n \times n}$ s.t. $\bar{Q}=\bar{Q}^{\top}$
- $\bar{q} \in \mathbb{R}^{n}$
- $\bar{c} \in \mathbb{R}$
- $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$ Gaussian error

Constrained Quadratic Regression

$$
z=\frac{1}{2} w^{\top} \bar{Q} w+\bar{q}^{\top} w+\bar{c}+\epsilon
$$

- $w \in \mathbb{R}^{n}$ features vector
- $z \in \mathbb{R}$ output
- $\bar{Q} \in \mathbb{R}^{n \times n}$ s.t. $\bar{Q}=\bar{Q}^{\top}$
- $\bar{q} \in \mathbb{R}^{n}$
- $\bar{c} \in \mathbb{R}$
- $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$ Gaussian error

Let us suppose that the parameters of this model are unknown, but we are given a dataset $\left(w_{i}, z_{i}\right)_{1 \leq i \leq P} \in\left(\mathbb{R}^{n} \times \mathbb{R}\right)^{P}$.

Constrained quadratic regression problem

Problem:

finding the maximum likelihood estimator for $\bar{Q} \in \mathbb{R}^{n \times n}, \bar{q} \in \mathbb{R}^{n}, \bar{c} \in \mathbb{R}$

$$
\Uparrow
$$

computing the triplet $(Q, q, c) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n} \times \mathbb{R}$ that minimizes the least-squares error $\sum_{i=1}^{P}\left(z_{i}-\frac{1}{2} w_{i}^{\top} Q w_{i}-q^{T} w_{i}-c\right)^{2}$.

Constrained quadratic regression problem

Problem:

finding the maximum likelihood estimator for $\bar{Q} \in \mathbb{R}^{n \times n}, \bar{q} \in \mathbb{R}^{n}, \bar{c} \in \mathbb{R}$

$$
\Uparrow
$$

computing the triplet $(Q, q, c) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n} \times \mathbb{R}$ that minimizes the least-squares error $\sum_{i=1}^{P}\left(z_{i}-\frac{1}{2} w_{i}^{T} Q w_{i}-q^{T} w_{i}-c\right)^{2}$.

Assumption

- the features vector belongs to a given polytope $\mathcal{F} \subset \mathbb{R}^{n}$
- the noiseless value $\frac{1}{2} y^{T} \bar{Q} y+\bar{q}^{T} y+\bar{c}$ is non-negative for any $y \in \mathcal{F}$

Problem formulation

Semi-infinite formulation

$$
\begin{array}{ll}
\min _{Q, q, c} & \sum_{i=1}^{P}\left(z_{i}-\frac{1}{2} w_{i}^{T} Q w_{i}-q^{T} w_{i}-c\right)^{2} \\
\text { s.t. } & Q=Q^{T} \\
& \frac{1}{2} y^{T} Q y+q^{T} y+c \geq 0, \quad \forall y \in \mathcal{F} \\
& Q \in \mathbb{R}^{n \times n}, q \in \mathbb{R}^{n}, c \in \mathbb{R} .
\end{array}
$$

Bilevel formulation

$$
\begin{array}{cl}
\min _{Q, q, c} & \sum_{i=1}^{P}\left(z_{i}-\frac{1}{2} w_{i}^{T} Q w_{i}-q^{T} w_{i}-c\right)^{2} \\
\text { s.t. } & Q=Q^{T} \\
& \min _{y \in \mathcal{F}}\left\{\frac{1}{2} y^{T} Q y+q^{T} y\right\} \geq-c \\
& Q \in \mathbb{R}^{n \times n}, q \in \mathbb{R}^{n}, c \in \mathbb{R}
\end{array}
$$

Dual restriction/reformulation

Q not PSD \Longrightarrow we obtain an upper bound of the BP

$$
\begin{aligned}
\min _{Q, q, c, \lambda, \alpha, \beta} & \sum_{i=1}^{P}\left(z_{i}-\frac{1}{2} w_{i}^{\top} Q w_{i}-q^{\top} w_{i}-c\right)^{2} \\
\text { s.t. } & Q=Q^{\top} \\
& -\lambda^{\top} b-\alpha\left(1+\rho^{2}\right)-\beta \geq-c \\
& \frac{1}{2}\left(\begin{array}{cc}
Q+2 \alpha I_{n} & q \\
q^{\top} & 2(\beta+\alpha)
\end{array}\right)+\sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j} \succeq 0 \\
& Q \in \mathbb{R}^{n \times n}, q \in \mathbb{R}^{n}, c \in \mathbb{R} \\
& \lambda \in \mathbb{R}_{+}^{r}, \alpha \in \mathbb{R}_{+}, \beta \in \mathbb{R} .
\end{aligned}
$$

In general, it is a restriction of the original bilevel problem formulation since Q may not necessarily be PSD.

KKT relaxation/reformulation

Q not PSD \Longrightarrow we obtain a lower bound of the BP

$$
\begin{aligned}
\min _{Q, q, c, y, \gamma} & \sum_{i=1}^{P}\left(z_{i}-\frac{1}{2} w_{i}^{\top} Q w_{i}-q^{\top} w_{i}-c\right)^{2} \\
\text { s.t. } & Q=Q^{\top} \\
& \frac{1}{2} y^{\top} Q y+q^{\top} y \geq-c \\
& A y \leq b \\
& Q y+q+A^{\top} \gamma=0 \\
& \gamma^{\top}(A y-b)=0 \\
& Q \in \mathbb{R}^{n \times n}, q \in \mathbb{R}^{n}, c \in \mathbb{R}, y \in \mathbb{R}^{n}, \gamma \in \mathbb{R}_{+}^{r},
\end{aligned}
$$

In general, it is a relaxation of the original bilevel problem formulation since Q may not necessarily be PSD.

Zero-sum game with quadratic payoff

Zero-sum game with quadratic payoff

Let us consider an undirected graph $\mathcal{G}=(V, E)$ (with $n=|V|)$. Each player positions a resource on each node $i \in V$. After normalization, we can consider that the action set of both players is $\Delta_{n}=\left\{x \in \mathbb{R}_{+}: \sum_{i=1}^{n} x_{i}=1\right\}$.
2 players zero-sum game: $P_{1}(x, y)=-P_{2}(x, y)$, being $P_{i}(x, y)$ the payoff of player i related to the pair of strategies (x, y).
\Longrightarrow We need to specify just one game payoff $P(x, y)$

Game payoff

The game payoff $P(x, y)$ related to the pair of strategies $(x, y) \in \Delta_{n} \times \Delta_{n}$ is

$$
P(x, y)=-x^{\top} M y+c_{1}(x)-c_{2}(x, y)
$$

given by the sum of:

Game payoff

The game payoff $P(x, y)$ related to the pair of strategies $(x, y) \in \Delta_{n} \times \Delta_{n}$ is

$$
P(x, y)=-x^{\top} M y+c_{1}(x)-c_{2}(x, y),
$$

given by the sum of:

- the opposite of a term describing the "proximity" between x and y in the graph, with $M \in \mathbb{R}^{n \times n}$ is the matrix defined as $M_{i j}=1$ if $i=j$ or $\{i, j\} \in E$, and $M_{i j}=0$ otherwise
\qquad

Game payoff

The game payoff $P(x, y)$ related to the pair of strategies $(x, y) \in \Delta_{n} \times \Delta_{n}$ is

$$
P(x, y)=-x^{\top} M y+c_{1}(x)-c_{2}(x, y),
$$

given by the sum of:

- the opposite of a term describing the "proximity" between x and y in the graph, with $M \in \mathbb{R}^{n \times n}$ is the matrix defined as $M_{i j}=1$ if $i=j$ or $\{i, j\} \in E$, and $M_{i j}=0$ otherwise
- the quadratic costs that player 1 has to pay to deploy his resources on the graph: $c_{1}(x)=\frac{1}{2} x^{\top} Q_{1} x+q_{1}^{\top} x$

Game payoff

The game payoff $P(x, y)$ related to the pair of strategies $(x, y) \in \Delta_{n} \times \Delta_{n}$ is

$$
P(x, y)=-x^{\top} M y+c_{1}(x)-c_{2}(x, y),
$$

given by the sum of:

- the opposite of a term describing the "proximity" between x and y in the graph, with $M \in \mathbb{R}^{n \times n}$ is the matrix defined as $M_{i j}=1$ if $i=j$ or $\{i, j\} \in E$, and $M_{i j}=0$ otherwise
- the quadratic costs that player 1 has to pay to deploy his resources on the graph: $c_{1}(x)=\frac{1}{2} x^{\top} Q_{1} x+q_{1}^{\top} x$
- the opposite of the quadratic costs that player 2 has to pay to deploy her resources on the graph, and that is influenced by player 1 strategy: $c_{2}(x, y)=\frac{1}{2} y^{\top} Q_{2}(x) y+q_{2}^{\top} y$.

This zero-sum game can then be written as

$$
\min _{x \in \Delta_{n} y \in \Delta_{n}} \max ^{\top}-x^{\top} M y+\frac{1}{2} x^{\top} Q_{1} x+q_{1}^{\top} x-\frac{1}{2} y^{\top} Q_{2}(x) y-q_{2}^{\top} y
$$

Bilevel formulation

From player 1's perspective, this problem can be cast as the following bilevel formulation:

Bilevel formulation

$$
\begin{array}{ll}
\min _{x, v} & v \\
\text { s.t. } & \sum_{i=1}^{n} x_{i}=1 \\
& v \geq \max _{y \in \Delta_{n}}-x^{\top} M y+\frac{1}{2} x^{\top} Q_{1} x+q_{1}^{\top} x-\frac{1}{2} y^{\top} Q_{2}(x) y-q_{2}^{\top} y \\
& x \in \mathbb{R}_{+}^{n}, v \in \mathbb{R} .
\end{array}
$$

Bilevel formulation

From player 1's perspective, this problem can be cast as the following bilevel formulation:

Bilevel formulation

$$
\begin{array}{ll}
\min _{x, v} & v \\
\text { s.t. } & \sum_{i=1}^{n} x_{i}=1 \\
& -v+\frac{1}{2} x^{\top} Q_{1} x+q_{1}^{\top} x \leq \min _{y \in \Delta_{n}} \frac{1}{2} y^{\top} Q_{2}(x) y+\left(q_{2}+M^{\top} x\right)^{\top} y \\
& x \in \mathbb{R}_{+}^{n}, v \in \mathbb{R} .
\end{array}
$$

Dual restriction/reformulation

Q not PSD for all feasible $x \Longrightarrow$ we obtain an upper bound of the BP.

$$
\begin{aligned}
\min _{x, v, \lambda, \alpha, \beta} & v \\
\text { s.t. } & \sum_{i=1}^{n} x_{i}=1 \\
& -v+\frac{1}{2} x^{\top} Q_{1} x+q_{1}^{\top} x \leq-\lambda_{1}-2 \alpha-\beta \\
& \frac{1}{2}\left(\begin{array}{cc}
Q_{2}(x)+2 \alpha l_{n} & q_{2}+M^{\top} x-\sum_{j=3}^{n+2} \lambda_{j} e_{j}+\left(\lambda_{1}-\lambda_{2}\right) 1 \\
\left(q_{2}+M^{\top} x-\sum_{j=3}^{n+2} \lambda_{j} e_{j}+\left(\lambda_{1}-\lambda_{2}\right) 1\right)^{\top} & 2(\beta+\alpha)
\end{array}\right) \succeq 0 \\
& x \in \mathbb{R}_{+}^{n}, v \in \mathbb{R} \\
& \lambda \in \mathbb{R}_{+}^{n+2}, \alpha \in \mathbb{R}_{+}, \beta \in \mathbb{R},
\end{aligned}
$$

KKT relaxation/reformulation

Q not PSD for all $\mathrm{x} \Longrightarrow$ we obtain a lower bound of the $B P$

$$
\begin{array}{rl}
\min _{x, v, y, \gamma_{1}, \gamma_{2}} & v \\
\text { s.t. } & \sum_{i=1}^{n} x_{i}=1 \\
& -v+\frac{1}{2} x^{\top} Q_{1} x+q_{1}^{\top} x \leq \frac{1}{2} y^{\top} Q_{2}(x) y+\left(q_{2}+M^{\top} x\right)^{\top} y \\
& \sum_{i=1}^{n} y_{i}=1 \\
& Q_{2}(x) y+q_{2}+M^{\top} x+\gamma_{1} 1-I_{n} \gamma_{2}=0 \\
& -\gamma_{2}^{\top}\left(I_{n} y\right)=0 \\
& x \in \mathbb{R}_{+}^{n}, v \in \mathbb{R}, y \in \mathbb{R}_{+}^{n}, \gamma_{1} \in \mathbb{R}, \gamma_{2} \in \mathbb{R}_{+}^{n} .
\end{array}
$$

Thanks for your attention!

