$\begin{array}{c} \text{Cutting plane approach} \\ \text{00} \end{array}$

Applications

Two approaches to solve a particular class of bilevel problems

Joint work with Antoine Oustry, Claudia D'Ambrosio, Leo Liberti

Martina Cerulli

mcerulli@lix.polytechnique.fr

LIX - École polytechnique - CNRS

March 2, 2021

MINOA MIXED-INTEGER NON-LINEAR OPTIMISATION: ALGORITHMS AND APPLICATIONS

$$\min_{x, y} F(x, y)$$
s.t. $G(x, y) \leq 0$
 $y \in \arg\min_{y'} \{f(x, y') | g(x, y') \leq 0\}$

 Introduction
 Dual approach
 Cutting plane approach
 Applications

 0000
 00000000
 000000000
 000000000

Optimal value function transformation

One way to reformulate the bilevel problem is considering the so-called *optimal value function* of the lower-level problem:

$$\varphi(x) = \min_{y'} \{f(x, y') | g(x, y') \leq 0\},$$

obtaining:

Optimal value reformulation

$$egin{aligned} \min_{x,\ y}\ F(x,y)\ s.t.\ G(x,y)&\leq 0\ g(x,y)&\leq 0\ f(x,y)&\leq arphi(x) \end{aligned}$$

.

If the lower level problem is convex, and a regularity condition as Slater's condition (or, equivalently, the (MFCQ)) is satisfied at all feasible points, it can be replaced by its KKT conditions, obtaining:

$$\begin{split} \min_{x, y} & F(x, y) \\ s.t. & G(x, y) \leq 0 \\ & \nabla_y f(x, y) + \lambda^\top \nabla_y g(x, y) = 0 \\ & g(x, y) \leq 0, \quad \lambda \geq 0 \\ & \lambda^\top \nabla_y g(x, y) = 0 \end{split}$$

If the lower level problem is not convex, this formulation is a relaxation of the bilevel problem.

Dual approach

 $\underset{OO}{\text{Cutting plane approach}}$

Applications

Our bilevel formulation

$$\begin{split} \min_{x \in \mathbb{R}^m} & F(x) \\ s.t. & G(x) \leq 0 \\ & h(x) \leq \min_{y \in \mathbb{R}^n} \{ \frac{1}{2} y^\top Q(x) y + q(x)^\top y | Ay \leq b \} \end{split}$$

Dual approach

Cutting plane approach 00

Applications

Our bilevel formulation

$$\begin{split} \min_{x \in \mathbb{R}^m} & F(x) \\ s.t. & G(x) \leq 0 \\ & h(x) \leq \min_{y \in \mathbb{R}^n} \{ \frac{1}{2} y^\top Q(x) y + q(x)^\top y | Ay \leq b \} \end{split}$$

- no *argmin* operator but an inequality constraint that links the upper and the lower-level problems
- only the variable x in the upper level; F(x), G(x), h(x) continuous in x
- a quadratic lower-level problem P_x with a feasible set $\mathcal{F} = \{y \in \mathbb{R}^n : Ay \leq b\} = \{y \in \mathbb{R}^n : a_j^T y \leq b_j, \forall j = 1, ..., r\},$ which is assumed not to depend on x

Dual approach

Cutting plane approach 00

Applications

Our bilevel formulation

$$\min_{x \in \mathbb{R}^m} F(x)$$
s.t. $G(x) \le 0$
 $h(x) \le \min_{y \in \mathbb{R}^n} \{ \frac{1}{2} y^\top Q(x) y + q(x)^\top y | Ay \le b \}$
(BP)

• no *argmin* operator but an inequality constraint that links the upper and the lower-level problems

This class of programs arises in many applications requiring semi-infinite programming (SIP) problems, i.e. optimization problems with a finite number of variables and an infinite number of parametrized constraints of the type $\forall y \in Y$, $0 \leq f(x, y)$. In fact, if this is the case, it is sufficient to impose that this inequality holds for the minimum over all $y \in Y$ of f(x, y) in the following way:

$$0 \le \min_{y \in Y} f(x, y), \tag{1}$$

reformulating the SIP program into a bilevel problem.

Dual approach

Cutting plane approach 00

Applications

Our bilevel formulation

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^m} & F(\mathbf{x}) \\ s.t. & G(\mathbf{x}) \leq 0 \\ & h(\mathbf{x}) \leq \min_{y \in \mathbb{R}^n} \{ \frac{1}{2} y^\top Q(x) y + q(x)^\top y | Ay \leq b \} \end{split}$$

- no *argmin* operator but an inequality constraint that links the upper and the lower-level problems
- only the variable x in the upper level; F(x), G(x), h(x) continuous in x
- a quadratic lower-level problem P_x with a feasible set $\mathcal{F} = \{y \in \mathbb{R}^n : Ay \leq b\} = \{y \in \mathbb{R}^n : a_j^T y \leq b_j, \forall j = 1, ..., r\},$ which is assumed not to depend on x

Dual approach

Cutting plane approach 00

Applications

Our bilevel formulation

$$\min_{x \in \mathbb{R}^m} F(x)$$
s.t. $G(x) \le 0$ (BP)
$$h(x) \le \min_{y \in \mathbb{R}^n} \{ \frac{1}{2} y^\top Q(x) y + q(x)^\top y | Ay \le b \}$$

- no *argmin* operator but an inequality constraint that links the upper and the lower-level problems
- only the variable x in the upper level; F(x), G(x), h(x) continuous in x
- a quadratic lower-level problem P_x with a feasible set $\mathcal{F} = \{y \in \mathbb{R}^n : Ay \le b\} = \{y \in \mathbb{R}^n : a_j^T y \le b_j, \forall j = 1, ..., r\},$ which is assumed not to depend on x

Introductio	n
0000	

Dual approach

 $\begin{array}{c} \text{Cutting plane approach} \\ \circ \circ \end{array}$

Applications

Dual approach

 Introduction
 Dual approach
 Cutting plane approach
 Applications

 0000
 00000000
 00
 0000000000

SDP reformulation of the LL

Assumption

The LL feasible set

$$\mathcal{F} = \{ y \in \mathbb{R}^n : Ay \le b \} = \{ y \in \mathbb{R}^n : a_j^T y \le b_j, \forall j = 1, \dots, r \}$$

is compact and included in the centered I2-ball with radius $\rho > 0$, which is known.

We define the following matrices:

•
$$\mathcal{Q}(x) = \begin{pmatrix} \frac{1}{2}Q(x) & \frac{q(x)}{2} \\ \frac{q(x)}{2}T & 0 \end{pmatrix},$$

• $\mathcal{A}_j = \begin{pmatrix} 0_n & \frac{a_j}{2} \\ \frac{a_j^T}{2} & 0 \end{pmatrix}, \quad \forall j = 1, \dots, r.$

Dual approach

Cutting plane approach

Applications

SDP reformulation of the LL

With this notation, under Assumption 1, the problem

$$\begin{array}{ll} \min_{Y \in \mathbb{R}^{(n+1)\times(n+1)}} & \langle \mathcal{Q}(x), Y \rangle \\ \text{s.t.} & \langle \mathcal{A}_j, Y \rangle & \leq b_j, \quad \forall j = 1, \dots, r \\ & \mathsf{Tr}(Y) & \leq 1 + \rho^2 \\ & Y_{n+1,n+1} & = 1 \\ & Y & \succeq 0 \\ & \mathsf{rank}(Y) & = 1 \end{array}$$

is an exact reformulation of the quadratic lower level P_x , because any feasible matrix Y has the form $Y = \begin{pmatrix} y \\ 1 \end{pmatrix} \begin{pmatrix} y \\ 1 \end{pmatrix}^\top$ with $y \in \mathcal{F}$ such that $\langle \mathcal{Q}(x), Y \rangle = f(x, y)$.

Dual approach 00000000

Cutting plane approach

Applications

SDP reformulation/relaxation of the LL

If we relax the non-convex constraint rank(Y) = 1 we obtain:

It is a relaxation of the quadratic problem P_x (we define it SDP_x). It is a reformulation of P_{χ} if $Q \succeq 0$, despite the relaxation of the rank constraint.

Let *E* be a $(n+1) \times (n+1)$ matrix such that

$$E_{ij} = \begin{cases} 1 & \text{if } i = j = n+1 \\ 0 & \text{otherwise} \end{cases}$$

and I_{n+1} the identity matrix of size $(n + 1) \times (n + 1)$. The following SDP problem:

$$\max_{\lambda \in \mathbb{R}_{+}^{r}, \alpha \in \mathbb{R}_{+}, \beta \in \mathbb{R}} \quad -b^{\top}\lambda - \alpha(1+\rho^{2}) - \beta$$

s.t.
$$\mathcal{Q}(x) + \sum_{j=1}^{r} \lambda_{j}\mathcal{A}_{j} + \alpha I_{n+1} + \beta E \succeq 0,$$
$$(DSDP_{x})$$

is a dual problem of the problem (SDP_x) .

$$\begin{split} L_{x}(Y,\lambda,\alpha,\beta) &= \\ &= \langle \mathcal{Q}(x),Y \rangle + \sum_{j=1}^{r} \left[\lambda_{j} \left(\langle \mathcal{A}_{j},Y \rangle - b_{j} \right) \right] + \alpha (\mathsf{Tr}(Y) - 1 - \rho^{2}) + \beta (Y_{n+1,n+1} - 1) \\ &= -\sum_{j=1}^{r} \lambda_{j} b_{j} - \alpha (1 + \rho^{2}) - \beta + \left\langle \mathcal{Q}(x) + \sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j} + \alpha I_{n+1} + \beta E, Y \right\rangle. \end{split}$$

Introduction 0000	Dual approach 0000●0000	Cutting plane approach	Applications
Proof			

$$\begin{split} & \mathcal{L}_{x}(Y,\lambda,\alpha,\beta) = \\ &= \langle \mathcal{Q}(x),Y \rangle + \sum_{j=1}^{r} \left[\lambda_{j} \left(\langle \mathcal{A}_{j},Y \rangle - b_{j} \right) \right] + \alpha (\mathsf{Tr}(Y) - 1 - \rho^{2}) + \beta (Y_{n+1,n+1} - 1) \\ &= -\sum_{j=1}^{r} \lambda_{j} b_{j} - \alpha (1 + \rho^{2}) - \beta + \left\langle \mathcal{Q}(x) + \sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j} + \alpha I_{n+1} + \beta E, Y \right\rangle. \end{split}$$

And its Lagrangian dual problem:

$$\max_{\substack{\lambda \in \mathbb{R}^+, \\ \alpha \in \mathbb{R}_+ \\ \beta \in \mathbb{R}}} \min_{\mathbf{Y} \in S_{n+1}^+(\mathbb{R})} L_{\boldsymbol{X}}(\mathbf{Y}, \lambda, \alpha, \beta).$$

Introduction	Dual approach	Cutting plane approach	Applications
0000	0000●0000	00	
Proof			

$$\begin{split} L_{x}(Y,\lambda,\alpha,\beta) &= \\ &= \langle \mathcal{Q}(x),Y \rangle + \sum_{j=1}^{r} \left[\lambda_{j} \left(\langle \mathcal{A}_{j},Y \rangle - b_{j} \right) \right] + \alpha (\mathsf{Tr}(Y) - 1 - \rho^{2}) + \beta (Y_{n+1,n+1} - 1) \\ &= -\sum_{j=1}^{r} \lambda_{j} b_{j} - \alpha (1 + \rho^{2}) - \beta + \left\langle \mathcal{Q}(x) + \sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j} + \alpha I_{n+1} + \beta E, Y \right\rangle. \end{split}$$

And its Lagrangian dual problem:

$$\max_{\substack{\lambda \in \mathbb{R}^r_+ \\ \alpha \in \mathbb{R}_+ \\ \beta \in \mathbb{R}}} \left(-\left(\sum_{j=1}^r \lambda_j b_j + \alpha (1+\rho^2) + \beta \right) + \min_{Y \in S^+_{n+1}(\mathbb{R})} \left\langle \mathcal{Q}(x) + \sum_{j=1}^r \lambda_j \mathcal{A}_j + \alpha I_{n+1} + \beta E, Y \right\rangle \right)$$

Introduction	Dual approach	Cutting plane approach	Applications
0000	0000●0000	00	
Proof			

$$\begin{split} L_{x}(Y,\lambda,\alpha,\beta) &= \\ &= \langle \mathcal{Q}(x),Y \rangle + \sum_{j=1}^{r} \left[\lambda_{j} \left(\langle \mathcal{A}_{j},Y \rangle - b_{j} \right) \right] + \alpha (\mathsf{Tr}(Y) - 1 - \rho^{2}) + \beta (Y_{n+1,n+1} - 1) \\ &= -\sum_{j=1}^{r} \lambda_{j} b_{j} - \alpha (1 + \rho^{2}) - \beta + \left\langle \mathcal{Q}(x) + \sum_{j=1}^{r} \lambda_{j} \mathcal{A}_{j} + \alpha I_{n+1} + \beta E, Y \right\rangle. \end{split}$$

And its Lagrangian dual problem:

$$\max_{\substack{\lambda \in \mathbb{R}^r_+ \\ \alpha \in \mathbb{R}_+ \\ \beta \in \mathbb{R}}} \left(-\left(\sum_{j=1}^r \lambda_j b_j + \alpha (1+\rho^2) + \beta \right) + \left(\min_{\substack{Y \in S^+_{n+1}(\mathbb{R})}} \left\langle \mathcal{Q}(x) + \sum_{j=1}^r \lambda_j \mathcal{A}_j + \alpha I_{n+1} + \beta E, Y \right\rangle \right)$$

To prove strong duality, we prove that Slater condition holds for the dual problem

$$\max_{\lambda \in \mathbb{R}_{+}^{r}, \alpha \in \mathbb{R}_{+}, \beta \in \mathbb{R}} \quad -b^{\top}\lambda - \alpha(1+\rho^{2}) - \beta$$

s.t.
$$\mathcal{Q}(x) + \sum_{j=1}^{r} \lambda_{j}\mathcal{A}_{j} + \alpha I_{n+1} + \beta E \succeq 0,$$

$$(DSDP_{x})$$

We denote by m_x the minimum eigenvalue of Q(x). By definition of m_x , matrix $Q(x) + (1 - m_x)I_{n+1}$ is positive definite. This is why $(0, 1 - m_x, 0)$ is a strictly feasible point of $(DSDP_x)$, i.e. Slater condition holds.

Introduction 0000	Dual approach 000000●00	Cutting plane approach	Applications
Primal-dual p	air of the SDP	reformulation/relaxa	ition

Primal problem - SDI	∇_{x}		Dual p	problem - <i>DSDP</i> _x
$\begin{array}{c} \min_{\substack{Y \in \mathbb{R}^{(n+1)\times(n+1)} \\ \text{ s.t. }}} & \langle \mathcal{Q}(x), Y \\ \text{ s.t. } & \langle \mathcal{A}_j, Y \rangle \\ & \text{ Tr}(Y) \\ & Y_{n+1,n+1} \\ Y \end{array}$	´> <! ≻!</td <td>$egin{array}{ccc} b_j, & orall j\ 1+ ho^2\ 1\ 0 \end{array}$</td> <td>$\max_{\substack{\lambda \in \mathbb{R}'_+ \\ \alpha \in \mathbb{R}_+ \\ \beta \in \mathbb{R}}}$s.t.</td> <td>$-b^{\top}\lambda - \alpha(1+\rho^2) - \beta$$Q(x) + \sum_{j=1}^r \lambda_j A_j + \alpha I_{n+1} + \beta E \succeq 0$</td>	$egin{array}{ccc} b_j, & orall j\ 1+ ho^2\ 1\ 0 \end{array}$	$\max_{\substack{\lambda \in \mathbb{R}'_+ \\ \alpha \in \mathbb{R}_+ \\ \beta \in \mathbb{R}}}$ s.t.	$-b^{\top}\lambda - \alpha(1+\rho^2) - \beta$ $Q(x) + \sum_{j=1}^r \lambda_j A_j + \alpha I_{n+1} + \beta E \succeq 0$

Introduction 0000	Dual approach 000000●00	Cutting plane approach	Applications
Primal-dual p	air of the SDP i	reformulation/relaxat	ion

Primal proble	m - <i>SDP</i> _x		Dual p	problem - <i>DSDP</i> _x
$\min_{\substack{Y \in \mathbb{R}^{(n+1)\times(n+1)}\\ \text{s.t.}}}$	$egin{aligned} & \langle \mathcal{Q}(x), Y angle \ & \langle \mathcal{A}_j, Y angle \ & Tr(Y) \ & Y_{n+1,n+1} \ & Y \end{aligned}$	$egin{array}{ccc} b_j, & orall j\ 1+ ho^2\ 1\ 0 \end{array}$	$\max_{\substack{\lambda \in \mathbb{R}'_+ \\ \alpha \in \mathbb{R}_+ \\ \beta \in \mathbb{R}}}$ s.t.	$-b^{\top}\lambda - \alpha(1+\rho^2) - \beta$ $\mathcal{Q}(x) + \sum_{j=1}^r \lambda_j \mathcal{A}_j + \alpha I_{n+1} + \beta E \succeq 0$

 $\operatorname{val}(SDP_x) \leq \operatorname{val}(P_x)$

 $val(SDP_x) = val(DSDP_x)$

Introduction 0000	Dual approach ○○○○○○●○○	Cutting plane approach	Applications
Primal-dual p	pair of the SDP	reformulation	/relaxation

Primal problem	m - SDP_x			Dual p	problem - <i>DSDP_x</i>
$\min_{\substack{Y \in \mathbb{R}^{(n+1)\times(n+1)}\\ \text{s.t.}}}$	$\langle \mathcal{Q}(x), Y \rangle$ $\langle \mathcal{A}_j, Y \rangle$ Tr(Y) $Y_{n+1,n+1}$ Y	VI VI II XI	$egin{array}{cc} b_j, & orall j\ 1+ ho^2\ 1\ 0 \end{array}$	$\max_{\substack{\lambda \in \mathbb{R}'_+ \\ \alpha \in \mathbb{R}_+ \\ \beta \in \mathbb{R}}}$ s.t.	$-b^{\top}\lambda - lpha(1+ ho^2) - eta$ $\mathcal{Q}(x) + \sum_{j=1}^r \lambda_j \mathcal{A}_j + lpha I_{n+1} + eta E \succeq 0$

 $val(SDP_x) \le val(P_x)$ $val(SDP_x) = val(DSDP_x)$

 $h(x) \leq \operatorname{val}(DSDP_x) \iff h(x) \leq \operatorname{val}(SDP_x) \Longrightarrow h(x) \leq \operatorname{val}(P_x)$

Introduction 0000	Dual approach 000000●00	Cutting plane approach	Applications
Primal-dual p	air of the SDP ı	reformulation/relaxat	ion

Primal problem -
$$SDP_{x}$$

min
 $Y \in \mathbb{R}^{(n+1)\times(n+1)}$ $\langle Q(x), Y \rangle$
s.t. $\langle A_{j}, Y \rangle \leq b_{j}, \forall j$
 $Tr(Y) \leq 1+\rho^{2}$
 $Y_{n+1,n+1} = 1$
 $Y \geq 0$
Dual problem - $DSDP_{x}$
max
 $\lambda \in \mathbb{R}^{r}_{+}$
 $\beta \in \mathbb{R}$
s.t. $Q(x) + \sum_{j=1}^{r} \lambda_{j}A_{j} + \alpha I_{n+1} + \beta E \succeq 0$

 $val(SDP_x) = val(P_x)$ $val(SDP_x) = val(DSDP_x)$

 $h(x) \leq \operatorname{val}(DSDP_x) \iff h(x) \leq \operatorname{val}(SDP_x) \iff h(x) \leq \operatorname{val}(P_x)$

If $Q(x) \succeq 0$ for all feasible x

Introduction	
0000	

Dual approach

 $\begin{array}{c} \text{Cutting plane approach} \\ \circ \circ \end{array}$

Applications

An important step

Our bilevel formulation

$$\begin{array}{ll} \min_{x \in \mathbb{R}^m} & F(x) \\ \text{s.t.} & G(x) & \leq 0 \\ & h(x) & \leq \operatorname{val}(P_x) \end{array}$$

Introduction 0000	Dual approach ooooooo●o	Cutting plane approach	Applications
An important	step		

A restriction/reformulation

$$\begin{array}{ll} \min_{x \in \mathbb{R}^m} & F(x) \\ \text{s.t.} & G(x) & \leq 0 \\ & h(x) & \leq \operatorname{val}(DSDP_x) \end{array}$$

because either

$$h(x) \leq \operatorname{val}(DSDP_x) \iff h(x) \leq \operatorname{val}(SDP_x) \Longrightarrow h(x) \leq \operatorname{val}(P_x)$$

or

 $h(x) \leq \operatorname{val}(DSDP_x) \iff h(x) \leq \operatorname{val}(SDP_x) \iff h(x) \leq \operatorname{val}(P_x)$

Introduction	Dual approach	Cutting plane approach	Applications
0000	○○○○○○○●○	00	
An important	step		

A restriction/reformulation

Introduction	Dual approach	Cutting plane approach	Applications
0000	ooooooo●o	00	
An important	step		

A restriction/reformulation

$$\min_{\substack{x \in \mathbb{R}^m \\ \text{s.t.}}} F(x) \\ \text{s.t.} \quad \frac{G(x) \leq 0}{h(x) \leq \max_{\substack{\lambda \in \mathbb{R}^r_+ \\ \alpha \in \mathbb{R}_+ \\ \beta \in \mathbb{R}}} 2(x) + \sum_{j=1}^r \lambda_j \mathcal{A}_j + \alpha I_{n+1} + \beta E \succeq 0 }$$

We can replace it by:

$$\begin{array}{l} h(x) \leq -b^{\top}\lambda - \alpha(1+\rho^2) - \beta \\ \mathcal{Q}(x) + \sum\limits_{j=1}^{r} \lambda_j \mathcal{A}_j + \alpha I_{n+1} + \beta E \succeq 0 \end{array} \right\} \quad (*)$$

Dual approach 00000000● $\begin{array}{c} \text{Cutting plane approach} \\ \circ \circ \end{array}$

Applications

SDP restriction/reformulation of our BP

Given the lower-level dual variables λ, α, β :

$$\begin{split} \min_{\substack{x,\lambda,\alpha,\beta \\ \text{s.t.}}} & F(x) \\ \text{s.t.} & G(x) \leq 0 \\ & h(x) \leq -\lambda^{\top} b - \alpha (1+\rho^2) - \beta \\ & \mathcal{Q}(x) + \sum_j \lambda_j \mathcal{A}_j + \alpha I_{n+1} + \beta E \succeq 0 \\ & x \in \mathbb{R}^m, \lambda \in \mathbb{R}^r_+, \ \alpha \in \mathbb{R}_+, \beta \in \mathbb{R} \end{split}$$
(BPR)

We remark that the single-level problem (BPR)

- is convex if Q(x) and q(x) depend on x linearly, while F(x), G(x) and h(x) are convex,
- is a SDP problem if Q(x) and q(x) depend on x linearly, while F(x),
 G(x) and h(x) are convex and semidefinite representable.

Dual approach

Cutting plane approach $\bullet \circ$

Applications

Cutting plane approach

Introduction	Dual approach	Cutting plane approach	Applications
0000	000000000	⊙●	
Cutting plane	approach		

- 1: Let k = 1. Initialize the relaxation R_k of the bilevel problem (BP), obtained by considering the upper-level problem only.
- 2: while true do
- 3: Solve R_k , obtaining the optimal solution x^k .
- 4: Compute an optimal solution y^k of the LL problem for $x = x^k$.
- 5: **if** $h(x^k) \le \frac{1}{2} (y^k)^\top Q(x^k) y^k + q(x^k)^\top y^k$ then
- 6: The algorithm terminates and (x^k, y^k) is the optimal solution of the bilevel formulation.

7: else

8: Define R_{k+1} as R_k with the adjoined inequality:

$$h(x) \leq \frac{1}{2} (y^k)^\top Q(x) y^k + q(x)^\top y^k.$$

- 9: k := k + 110: **end if**
- 11: end while

Dual approach

 $\begin{array}{c} \text{Cutting plane approach} \\ \circ \circ \end{array}$

Applications

Applications

Dual approach

Cutting plane approach 00

Applications

Dual approach

Cutting plane approach 00

Applications

$$z = \frac{1}{2}w^{\top}\bar{Q}w + \bar{q}^{\top}w + \bar{c} + \epsilon$$

- $w \in \mathbb{R}^n$ features vector
- $z \in \mathbb{R}$ output
- $\bar{Q} \in \mathbb{R}^{n \times n}$ s.t. $\bar{Q} = \bar{Q}^{\top}$
- $\bar{q} \in \mathbb{R}^n$
- $\bar{c} \in \mathbb{R}$
- $\epsilon \sim \mathcal{N}(0, \sigma^2)$ Gaussian error

Dual approach

Cutting plane approach

Applications

Constrained Quadratic Regression

$$z = \frac{1}{2} \mathbf{w}^\top \bar{Q} \mathbf{w} + \bar{q}^\top \mathbf{w} + \bar{c} + \epsilon$$

• $w \in \mathbb{R}^n$ features vector

- $z \in \mathbb{R}$ output
- $ar{Q} \in \mathbb{R}^{n imes n}$ s.t. $ar{Q} = ar{Q}^{
 m T}$
- $\bar{q} \in \mathbb{R}^n$
- $\bar{c} \in \mathbb{R}$
- $\epsilon \sim \mathcal{N}(0, \sigma^2)$ Gaussian error

Dual approach

Cutting plane approach

Applications

$$\mathbf{z} = \frac{1}{2}\mathbf{w}^{\top}\bar{\mathbf{Q}}\mathbf{w} + \bar{\mathbf{q}}^{\top}\mathbf{w} + \bar{\mathbf{c}} + \epsilon$$

- $w \in \mathbb{R}^n$ features vector
- $z \in \mathbb{R}$ output
- $\bar{Q} \in \mathbb{R}^{n \times n}$ s.t. $\bar{Q} = \bar{Q}^{\top}$
- $ar{q} \in \mathbb{R}^n$
- $\bar{c} \in \mathbb{R}$
- $\epsilon \sim \mathcal{N}(0, \sigma^2)$ Gaussian error

Dual approach

Cutting plane approach 00

Applications

$$z = \frac{1}{2}w^{\top}\bar{Q}w + \bar{q}^{\top}w + \bar{c} + \epsilon$$

- $w \in \mathbb{R}^n$ features vector
- $z \in \mathbb{R}$ output
- $ar{Q} \in \mathbb{R}^{n imes n}$ s.t. $ar{Q} = ar{Q}^{ op}$
- $\bar{q} \in \mathbb{R}^n$
- $\bar{c} \in \mathbb{R}$
- $\epsilon \sim \mathcal{N}(0,\sigma^2)$ Gaussian error

Dual approach

Cutting plane approach

Applications

$$z = \frac{1}{2}w^{\top}\bar{Q}w + \bar{q}^{\top}w + \bar{c} + \epsilon$$

- $w \in \mathbb{R}^n$ features vector
- $z \in \mathbb{R}$ output
- $ar{Q} \in \mathbb{R}^{n imes n}$ s.t. $ar{Q} = ar{Q}^{ op}$
- $\bar{q} \in \mathbb{R}^n$
- $ar{c} \in \mathbb{R}$
- $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$ Gaussian error

Dual approach

Cutting plane approach 00

Applications

Constrained Quadratic Regression

$$z = \frac{1}{2} w^{\top} \bar{Q} w + \bar{q}^{\top} w + \bar{c} + \epsilon$$

- $w \in \mathbb{R}^n$ features vector
- $z \in \mathbb{R}$ output
- $ar{Q} \in \mathbb{R}^{n imes n}$ s.t. $ar{Q} = ar{Q}^{ op}$
- $\bar{q} \in \mathbb{R}^n$
- $\bar{c} \in \mathbb{R}$
- $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$ Gaussian error

Let us suppose that the parameters of this model are unknown, but we are given a dataset $(w_i, z_i)_{1 \le i \le P} \in (\mathbb{R}^n \times \mathbb{R})^P$.

 Introduction
 Dual approach
 Cutting plane approach

 0000
 00000000
 00

Applications

Constrained quadratic regression problem

Problem:

finding the maximum likelihood estimator for $\bar{Q} \in \mathbb{R}^{n \times n}, \ \bar{q} \in \mathbb{R}^{n}, \ \bar{c} \in \mathbb{R}$

computing the triplet $(Q, q, c) \in \mathbb{R}^{n \times n} \times \mathbb{R}^n \times \mathbb{R}$ that minimizes the least-squares error $\sum_{i=1}^{P} (z_i - \frac{1}{2}w_i^T Qw_i - q^T w_i - c)^2$.

 oduction
 Dual approach
 Cutting plane approach

 00
 000000000
 00

Applications

Constrained quadratic regression problem

Problem:

finding the maximum likelihood estimator for $\bar{Q} \in \mathbb{R}^{n \times n}, \ \bar{q} \in \mathbb{R}^{n}, \ \bar{c} \in \mathbb{R}$

computing the triplet $(Q, q, c) \in \mathbb{R}^{n \times n} \times \mathbb{R}^n \times \mathbb{R}$ that minimizes the least-squares error $\sum_{i=1}^{P} (z_i - \frac{1}{2}w_i^T Qw_i - q^T w_i - c)^2$.

Assumption

- the features vector belongs to a given polytope $\mathcal{F} \subset \mathbb{R}^n$
- the noiseless value $\frac{1}{2}y^T \bar{Q}y + \bar{q}^T y + \bar{c}$ is non-negative for any $y \in \mathcal{F}$

Dual approach

 $\begin{array}{c} \text{Cutting plane approach} \\ \circ \circ \end{array}$

Applications

Problem formulation

Semi-infinite formulation

$$\min_{Q,q,c} \sum_{i=1}^{P} (z_i - \frac{1}{2}w_i^T Q w_i - q^T w_i - c)^2$$

s.t.
$$Q = Q^T$$

 $\frac{1}{2}y^TQy + q^Ty + c \ge 0, \quad \forall y \in \mathcal{F}$
 $Q \in \mathbb{R}^{n \times n}, \ q \in \mathbb{R}^n, \ c \in \mathbb{R}.$

Bilevel formulation

$$egin{aligned} \min_{Q,q,c} & \sum_{i=1}^{P} (z_i - rac{1}{2} w_i^T Q w_i - q^T w_i - c)^2 \ ext{s.t.} & Q = Q^T \ & \min_{y \in \mathcal{F}} \{ rac{1}{2} y^T Q y + q^T y \} \geq -c \ & Q \in \mathbb{R}^{n imes n}, \ q \in \mathbb{R}^n, \ c \in \mathbb{R}. \end{aligned}$$

Dual approach

Cutting plane approach

Applications

Dual restriction/reformulation

Q not PSD \Longrightarrow we obtain an **upper bound** of the BP

$$\begin{array}{ll} \min_{Q,q,c,\lambda,\alpha,\beta} & \sum\limits_{i=1}^{P} (z_i - \frac{1}{2} w_i^\top Q w_i - q^\top w_i - c)^2 \\ \text{s.t.} & Q = Q^\top \\ & -\lambda^\top b - \alpha (1 + \rho^2) - \beta \geq -c \\ & \frac{1}{2} \begin{pmatrix} Q + 2\alpha I_n & q \\ q^\top & 2(\beta + \alpha) \end{pmatrix} + \sum\limits_{j=1}^r \lambda_j \mathcal{A}_j \succeq 0 \\ & Q \in \mathbb{R}^{n \times n}, \ q \in \mathbb{R}^n, \ c \in \mathbb{R} \\ & \lambda \in \mathbb{R}_+^r, \ \alpha \in \mathbb{R}_+, \beta \in \mathbb{R}. \end{array}$$

In general, it is a restriction of the original bilevel problem formulation since Q may not necessarily be PSD.

Dual approach

Cutting plane approach

Applications

KKT relaxation/reformulation

Q not PSD \Longrightarrow we obtain a **lower bound** of the BP

$$\begin{array}{ll} \min_{Q,q,c,y,\gamma} & \sum\limits_{i=1}^{P} (z_i - \frac{1}{2} w_i^\top Q w_i - q^\top w_i - c)^2 \\ \text{s.t.} & Q = Q^\top \\ & \frac{1}{2} y^\top Q y + q^\top y \geq -c \\ & A y \leq b \\ & Q y + q + A^\top \gamma = 0 \\ & \gamma^\top (A y - b) = 0 \\ & Q \in \mathbb{R}^{n \times n}, \ q \in \mathbb{R}^n, \ c \in \mathbb{R}, \ y \in \mathbb{R}^n, \ \gamma \in \mathbb{R}_+^r, \end{array}$$

In general, it is a relaxation of the original bilevel problem formulation since Q may not necessarily be PSD.

Dual approach

Cutting plane approach 00

Applications

Zero-sum game with quadratic payoff

Dual approach

 $\begin{array}{c} \text{Cutting plane approach} \\ \circ \circ \end{array}$

Applications

Zero-sum game with quadratic payoff

Let us consider an undirected graph $\mathcal{G} = (V, E)$ (with n = |V|). Each player positions a resource on each node $i \in V$. After normalization, we can consider that the action set of both players is $\Delta_n = \{x \in \mathbb{R}_+ : \sum_{i=1}^n x_i = 1\}.$ 2 players zero-sum game: $P_1(x, y) = -P_2(x, y)$, being $P_i(x, y)$ the payoff of player *i* related to the pair of strategies (x, y). \implies We need to specify just one game payoff P(x, y)

Introduction 0000	Dual approach	Cutting plane approach	Applications
Game payoff			

$$P(x, y) = -x^{\top} M y + c_1(x) - c_2(x, y),$$

- the opposite of a term describing the "proximity" between x and y in the graph, with M ∈ ℝ^{n×n} is the matrix defined as M_{ij} = 1 if i = j or {i, j} ∈ E, and M_{ij} = 0 otherwise
- the quadratic costs that player 1 has to pay to deploy his resources on the graph: $c_1(x) = \frac{1}{2}x^\top Q_1 x + q_1^\top x$
- the opposite of the quadratic costs that player 2 has to pay to deploy her resources on the graph, and that is influenced by player 1 strategy: $c_2(x, y) = \frac{1}{2}y^\top Q_2(x)y + q_2^\top y$.

Introduction 0000	Dual approach 000000000	Cutting plane approach	Applications
Game payoff			

$$P(x,y) = -x^{\top} M y + c_1(x) - c_2(x,y),$$

- the opposite of a term describing the "proximity" between x and y in the graph, with M ∈ ℝ^{n×n} is the matrix defined as M_{ij} = 1 if i = j or {i, j} ∈ E, and M_{ij} = 0 otherwise
- the quadratic costs that player 1 has to pay to deploy his resources on the graph: $c_1(x) = \frac{1}{2}x^\top Q_1 x + q_1^\top x$
- the opposite of the quadratic costs that player 2 has to pay to deploy her resources on the graph, and that is influenced by player 1 strategy: $c_2(x, y) = \frac{1}{2}y^\top Q_2(x)y + q_2^\top y$.

Introduction 0000	Dual approach 000000000	Cutting plane approach	Applications
Game payoff			

$$P(x,y) = -x^{\top} M y + c_1(x) - c_2(x,y),$$

- the opposite of a term describing the "proximity" between x and y in the graph, with $M \in \mathbb{R}^{n \times n}$ is the matrix defined as $M_{ij} = 1$ if i = j or $\{i, j\} \in E$, and $M_{ij} = 0$ otherwise
- the quadratic costs that player 1 has to pay to deploy his resources on the graph: $c_1(x) = \frac{1}{2}x^\top Q_1 x + q_1^\top x$
- the opposite of the quadratic costs that player 2 has to pay to deploy her resources on the graph, and that is influenced by player 1 strategy: c₂(x, y) = ¹/₂y[⊤]Q₂(x)y + q[⊤]₂y.

Introduction 0000	Dual approach 000000000	Cutting plane approach	Applications
Game payoff			

$$P(x, y) = -x^{\top} M y + c_1(x) - c_2(x, y),$$

- the opposite of a term describing the "proximity" between x and y in the graph, with $M \in \mathbb{R}^{n \times n}$ is the matrix defined as $M_{ij} = 1$ if i = j or $\{i, j\} \in E$, and $M_{ij} = 0$ otherwise
- the quadratic costs that player 1 has to pay to deploy his resources on the graph: $c_1(x) = \frac{1}{2}x^\top Q_1 x + q_1^\top x$
- the opposite of the quadratic costs that player 2 has to pay to deploy her resources on the graph, and that is influenced by player 1 strategy: $c_2(x, y) = \frac{1}{2}y^{\top}Q_2(x)y + q_2^{\top}y$.

Introduction	Dual approach	Cutting plane approach	Applications
0000	00000000	00	000000000000000000000000000000000000000

This zero-sum game can then be written as

$$\min_{x \in \Delta_n y \in \Delta_n} \max_{x \in \Delta_n} - x^\top M y + \frac{1}{2} x^\top Q_1 x + q_1^\top x - \frac{1}{2} y^\top Q_2(x) y - q_2^\top y$$

Introduction 0000	Dual approach 00000000	Cutting plane approach	Applications
Bilevel form	nulation		

From player 1's perspective, this problem can be cast as the following bilevel formulation:

Bilevel formulation $\begin{array}{ll} \underset{x,v}{\min} & v \\ \text{s.t.} & \sum_{i=1}^{n} x_i = 1 \\ & v \geq \underset{y \in \Delta_n}{\max} - x^\top M y + \frac{1}{2} x^\top Q_1 x + q_1^\top x - \frac{1}{2} y^\top Q_2(x) y - q_2^\top y \\ & x \in \mathbb{R}^n_+, \ v \in \mathbb{R}. \end{array}$

Introduction 0000	Dual approach 000000000	Cutting plane approach	Applications
Rilevel for	mulation		

From player 1's perspective, this problem can be cast as the following bilevel formulation:

Bilevel formulation

$$\begin{split} \min_{x,v} & v \\ \text{s.t.} & \sum_{i=1}^n x_i = 1 \\ & -v + \frac{1}{2} x^\top Q_1 x + q_1^\top x \leq \min_{y \in \Delta_n} \frac{1}{2} y^\top Q_2(x) y + (q_2 + M^\top x)^\top y \\ & x \in \mathbb{R}^n_+, \ v \in \mathbb{R}. \end{split}$$

Dual approach

Cutting plane approach

Applications

Dual restriction/reformulation

Q not PSD for all feasible $x \implies$ we obtain an **upper bound** of the BP.

$$\begin{split} \min_{x,v,\lambda,\alpha,\beta} & v \\ \text{s.t.} & \sum_{i=1}^{n} x_i = 1 \\ & -v + \frac{1}{2} x^\top Q_1 x + q_1^\top x \leq -\lambda_1 - 2\alpha - \beta \\ & \frac{1}{2} \begin{pmatrix} Q_2(x) + 2\alpha I_n & q_2 + M^\top x - \frac{n+2}{j=3} \lambda_j e_j + (\lambda_1 - \lambda_2) 1 \\ (q_2 + M^\top x - \frac{n+2}{j=3} \lambda_j e_j + (\lambda_1 - \lambda_2) 1)^\top & 2(\beta + \alpha) \end{pmatrix} \succeq 0 \\ & x \in \mathbb{R}^n_+, v \in \mathbb{R} \\ & \lambda \in \mathbb{R}^{n+2}_+, \alpha \in \mathbb{R}_+, \beta \in \mathbb{R}, \end{split}$$

Dual approach

Cutting plane approach

Applications

KKT relaxation/reformulation

Q not PSD for all $x \Longrightarrow$ we obtain a lower bound of the BP

$$\min_{x,v,y,\gamma_{1},\gamma_{2}} \quad v \\ \text{s.t.} \quad \sum_{i=1}^{n} x_{i} = 1 \\ \quad -v + \frac{1}{2}x^{\top}Q_{1}x + q_{1}^{\top}x \leq \frac{1}{2}y^{\top}Q_{2}(x)y + (q_{2} + M^{\top}x)^{\top}y \\ \quad \sum_{i=1}^{n} y_{i} = 1 \\ \quad Q_{2}(x)y + q_{2} + M^{\top}x + \gamma_{1}1 - I_{n}\gamma_{2} = 0 \\ \quad -\gamma_{2}^{\top}(I_{n}y) = 0 \\ \quad x \in \mathbb{R}^{n}_{+}, \; v \in \mathbb{R}, \; y \in \mathbb{R}^{n}_{+}, \; \gamma_{1} \in \mathbb{R}, \; \gamma_{2} \in \mathbb{R}^{n}_{+}.$$

Dual approach

Cutting plane approach 00

Applications

Thanks for your attention!