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1 - Polynomial optimization



POP (Polynomial Optimization Problem)

Given polynomials p, p1, . . . pm ∈ R[x] of the indeterminate x ∈ Rn,

consider the nonlinear nonconvex global optimization problem

p∗ = min
x∈X

p(x)

defined on the bounded basic semialgebraic set

X := {x ∈ Rn : p1(x) ≥ 0, . . . pm(x) ≥ 0}

.

In general POP can be very challenging:

• p can be nonconvex

• X can be nonconvex and/or disconnected and/or discrete

• there can be several global optimizers, maybe infinitly many



2 - Linear conic reformulation



Primal linear reformulation

Instead of the POP

p∗ = min
x∈X

p(x)

over vectors in X, consider the linear problem (LP)

p∗M = min
µ

∫
X
p(x)dµ(x)

over probability measures (normalized bounded linear functionals

on continuous functions) on X

Lemma: p∗M = p∗ and the LP has for optimal solution the

Dirac measure at any optimal solution of the POP



Dual linear reformulation

The Lagrange dual to the LP on probability measures

min
µ

∫
X
p(x)dµ(x)

reads

max
pL

pL s.t. p(x) ≥ pL ∀x ∈ X

which can be rephrased as an LP on positive polynomials

max
pL

pL s.t. p(x)− pL ∈ P (X)d

where P (X)d denotes the convex cone of polynomials of degree

up to d that are non-negative on X



Moments

Let (ba(x))a∈Nnd
denote a basis of the vector space of n-variate

polynomials of degree at most d of dimension
(
n+d
n

)
, indexed in

Nnd := {a ∈ Nn :
∑n
k=1 ak ≤ d}

The polynomial p can then be written as

p(x) =
∑
a∈Nnd

paba(x)

and the objective function can be written as∫
X
p(x)dµ(x) =

∑
a∈Nnd

paya

which is a linear function of the moments of measure µ

ya =
∫
X
ba(x)dµ(x)



Moments and positive polynomials

The LP on probability measures

min
µ

∫
X
p(x)dµ(x)

becomes an LP on moments

min
y

∑
a
paya s.t. y0 = 1, y ∈ P (X)′d

which is dual to the LP on positive polynomials

max
pL

pL s.t. p(x)− pL ∈ P (X)d

since
• measures on compact X are uniquely determined by moments
• the constraint y0 = 1 corresponds to the normalization
• by the Riesz-Haviland Theorem, the cone of moments is dual
to the cone of positive polynomials



Wonderful but ...



Challenging convex cones

Testing whether p ∈ P (X)d or y ∈ P (X)′d is difficult

Not much is known about the geometry of these cones

No efficient barrier function is known

... so we will content ourselves with approximations



3 - Polynomial sums of squares and moments



Approximating positive polynomials

The cone of positive polynomials P (X)d on the compact set

X := {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . ,m}
is generally intractable, so we will approximate it.

Denoting p0(x) := 1 and enforcing (without loss of generality)
p1(x) := R2 −

∑n
i=1 x

2
i for R large enough, consider for r ≥ d

Σ(X)r := {p ∈ R[x]d : p =
m∑
k=0

skpk, sk ∈ Σr−degpk}

where Σd denotes the cone of polynomial sums of squares
(SOS) of degree at most d

Lemma: By construction Σ(X)r ⊂ Σ(X)r+1 ⊂ P (X)d



Polynomial SOS

Lemma: Deciding whether a polynomial is SOS reduces to

semidefinite programming

Semidefinite programs can be solved efficiently with primal-dual

interior-point methods



SOS and positivity

Theorem (Hilbert 1888): Σ(Rn)2d = P (Rn)2d if and only if

n = 1 or d = 1 or n = d = 2

Hilbert’s 17th problem at ICM Paris 1900

Motzkin’s 1965 example
p = 1− 3x2

1x
2
2 + x4

1x
2
2 + x2

1x
4
2 ∈ P (R2)6\Σ(R2)6



Moment relaxations

Hence we have a hierarchy of tractable inner approximations
for the cone of positive polynomials

Σ(X)r ⊂ Σ(X)r+1 ⊂ P (X)d

Using convex duality, we also have a hierarchy of tractable outer
approximations for the cone of moments

Σ(X)′r ⊃ Σ(X)′r+1 ⊃ P (X)′d

Elements of Σ(X)′r are sometimes called pseudo-expectations or
pseudo-moments, since some of them are not moments

We also say that Σ(X)′r is a relaxation of P (X)′d



4 - The Lasserre hierarchy



The Lasserre or moment-SOS hierarchy

Replace the intractable problems

p∗ = min
y

∑
a
paya s.t. y0 = 1, y ∈ P (X)′d

p∗ = max
pL

pL s.t. p(x)− pL ∈ P (X)d

with the hierarchy of semidefinite problems

p∗r = min
y

∑
a
paya s.t. y0 = 1, y ∈ Σ(X)′r

p∗r = max
pL

pL s.t. p(x)− pL ∈ Σ(X)r

for increasing values of r ≥ d



Convergence

Integer r is called the relaxation order

Since Σ(X)r ⊂ Σ(X)r+1 ⊂ P (X)d, we have a monotone non-

decreasing sequence of lower bounds on the POP value:

p∗r ≤ p∗r+1 ≤ p
∗

Theorem (Putinar 1993): Σ(X)∞ = P (X)d

Theorem (Lasserre 2001): p∗∞ = p∗



Finite convergence

Theorem (Nie 2014): Generically ∃r <∞ such that p∗r = p∗

In other words, a vanishing small random perturbation of the

input data of a given POP ensures finite convergence of the

Lasserre hierarchy

We also have sufficient linear algebra conditions to ensure finite

convergence, certify global optimality and extract minimizers

We can use the Christoffel-Darboux SOS polynomial to retrieve

approximately the variety of global minimizers



Extensions

Dynamical systems: polynomial iterations
Maximal positively invariant sets
Optimal control of polynomial ODEs

POEMA European Network (2019-2022) poema-network.eu

Lectures at homepages.laas.fr/henrion/courses/poema20
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One page summary of previous talk

The polynomial optimization problem

p∗ = min
x∈X

p(x)

defined on the bounded basic semialgebraic set

X := {x ∈ Rn : p1(x) ≥ 0, . . . pm(x) ≥ 0}

can be solved by a hierarchy of semidefinite problems

p∗r = min
y

∑
a

paya s.t. y0 = 1, y ∈ Σ(X)′r (moments)

p∗r = max
pL

pL s.t. p(x)− pL ∈ Σ(X)r (sums of squares)

with convergence guarantee p∗r ≤ p∗r+1 ≤ p∗∞ = p∗



Demo topics

SOS reduces to SDP

Dual to SOS are moment matrix LMI relaxations

Low rank moment matrices for global optimality

Christoffel-Darboux polynomial for optimal variety

... and maybe more depending on your interest ?

We will be using GloptiPoly and SeDuMi on Matlab


