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Abstract

Many problems of systems control theory boil down to solving polynomial equations,
polynomial inequalities or polyomial differential equations. Recent advances in convex
optimization and real algebraic geometry can be combined to generate approximate solu-
tions in floating point arithmetic.

In the first part of the course we describe semidefinite programming (SDP) as an extension
of linear programming (LP) to the cone of positive semidefinite matrices. We investigate
the geometry of spectrahedra, convex sets defined by linear matrix inequalities (LMIs)
or affine sections of the SDP cone. We also introduce spectrahedral shadows, or lifted
LMIs, obtained by projecting affine sections of the SDP cones. Then we review existing
numerical algorithms for solving SDP problems.

In the second part of the course we describe several recent applications of SDP. First, we
explain how to solve polynomial optimization problems, where a real multivariate polyno-
mial must be optimized over a (possibly nonconvex) basic semialgebraic set. Second, we
extend these techniques to ordinary differential equations (ODEs) with polynomial dy-
namics, and the problem of trajectory optimization (analysis of stability or performance
of solutions of ODEs). Third, we conclude this part with applications to optimal control
(design of a trajectory optimal w.r.t. a given functional).

For some of these decision and optimization problems, it is hoped that the numerical
solutions computed by SDP can be refined a posteriori and certified rigorously with ap-
propriate techniques.

Disclaimer

These lecture notes were initially written for a tutorial course given during the conference
“Journées Nationales de Calcul Formel” held at Luminy, France, in May 2013. They
were slightly updated for the “International Summer School of Automatic Control” held
at Grenoble, France, in September 2014. The lecture notes are aimed at giving an ele-
mentary and introductory account to recent applications of semidefinite programming to
the numerical solution of decision problems involving polynomials in systems and con-
trol theory. The main technical results are gathered in a hopefully concise, notationally
simple way, but for the sake of conciseness and readability, they are not proved in the doc-
ument. The reader interested in mathematical rigorous comprehensive technical proofs
is referred to the papers and books listed in the “Notes and references” section of each
chapter. Comments, feedback, suggestions for improvement of these lectures notes are
much welcome.
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Chapter 1

Motivating examples

In this introductory section we describe elementary problems of systems control theory
that can be formulated as decision and optimization problems over polynomial equations
and differential equations.

1.1 Structured eigenvalue assignment

We consider the problem of designing a pulsed power generator in an electrical network.
The engineering specification of the design is that a suitable resonance condition is sat-
isfied by the circuit so that the energy initially stored in a number of stage capacitors is
transferred in finite time to a single load capacitor which can then store the total energy
and deliver the pulse.

Mathematically speaking, the problem can be formulated as the following structured
matrix eigenvalue assignment problem. Let n ∈ N and define the matrix

B =


2 −1 0 · · · 0

−1 2
...

0
. . . 0

... 2 −1
0 · · · 0 −1 n+1

n

 .

Given positive rational numbers ak ∈ Q, k = 1, . . . , n, consider the eigenvalue assignment
problem

det(sIn −B−1 diag x) = sn + b1(x)sn−1 + · · ·+ bn−1(x)s+ bn(x) =
n∏
k=1

(s+ ak)

where x ∈ Rn is a vector of unknowns and diag x stands for the n-by-n matrix with
entries of x along the diagonal. In systems and control terminology, this is a structured
pole placement problem, and vector x can be interpreted as a parametrization of a linear
controller to be designed. By identifying like powers of indeterminate s in the above
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relation, it can be formulated as a polynomial system of equations pk(x) = 0, k = 1, . . . , n
where

p1(x) = b1(x)− a1 − · · · − an
p2(x) = b2(x)− a1a2 − a1a3 − · · · − an−1an

...
pn(x) = bn(x)− a1a2 · · · an.

In the context of electrical generator design, a physically relevant choice of eigenvalues is

ak =
1

(2k)2 − 1
, k = 1, . . . , n.

For example, if n = 2, we obtain the following system

3
4
x1 + x2 − 2

5
= 0

1
2
x1x2 − 1

45
= 0.

More generally, we obtain a system with n unknowns and n polynomial equations of
respective degrees 1, . . . , n which has typically much less than n! real solutions. Geomet-
rically, the feasibility set

X = {x ∈ Rn : pk(x) = 0, k = 1, . . . , n}

is a zero-dimensional real algebraic set of small cardinality. When n = 8, say, we would
like to find a point in X.

1.2 Control law validation

In aerospace engineering, the validation of control laws is a critical step before indus-
trialization. Generally it is carried out by expensive time-simulations. A very simple,
but representative example, is the validation of a control law for a one-degree-of-freedom
model of a launcher attitude control system in orbital phase. The closed-loop system
must follow a given piecewise linear angular velocity profile. It is modeled as a double
integrator

Iθ̈(t) = u(t)

where I is a given constant inertia, θ(t) is the angle and u(t) is the torque control. We
denote

x(t) =

[
θ(t)

θ̇(t)

]
and we assume that both angle x1(t) and angular velocity x2(t) are measured, and that
the torque control is given by

u(x(t)) = sat(F ′dz(xr(t)− x(t)))

where xr(t) is the given reference signal, F ∈ R2 is a given state feedback, the prime
denotes transposition, sat is a saturation function such that sat(y) = y if |y| ≤ L and
sat(y) = L sign(y) otherwise, dz is a dead-zone function such that dz(x) = 0 if |xi| ≤ Di

5



for some i = 1, 2 and dz(x) = 1 otherwise. Thresholds L > 0, D1 > 0 and D2 > 0 are
given.

We would like to verify whether the system state x(t) reaches a given subset XT = {x ∈
R2 : xTx ≤ ε} of the deadzone region after a fixed time T , and for all possible initial
conditions x(0) chosen in a given subset X0 of the state-space, and for zero reference
signals.

1.3 Bolza’s optimal control problem

Figure 1.1: Sequences of state trajectories and control inputs for Bolza’s example.

Our last example is a classical academic problem of calculus of variations illustrating that
an optimal control problem with smooth data (infinitely differentiable Lagrangian and
dynamics, no state or input constraints) can have a highly oscillatory optimal solution.

Consider the optimal control problem

p∗ = inf
∫ 1

0
(x4(t) + (u2(t)− 1)2) dt

s.t. ẋ(t) = u(t), t ∈ [0, 1],
x(0) = 0, x(1) = 0

where the infimum is w.r.t. a Lebesgue integrable real-valued control u ∈ L 1([0, 1];R).
Intuitively, the state trajectory x(t) should remain zero, and the velocity ẋ = u should be
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equal to +1 or −1, so that the nonnegative Lagrangian l(t, x(t), u(t)) := x4(t)+(u2(t)−1)2

remains zero, and hence the objective function is zero, the best we can hope. We can build
a sequence of bang-bang controls uk(t) such that for each k = 0, 1, 2, . . . the corresponding
state trajectory xk(t) has a sawtooth shape, see Figure 1.1. With such a sequence the

objective function tends to limk→∞
∫ 1

0
l(t, xk(t), uk(t))dt =

∫ 1

0
x4k(t)dt = 0 and hence p∗ =

0. This infimum is however not attained with a control law u(t) belonging to the space
of Lebesgue integrable functions.

We would like to develop a numerical method that can deal with such oscillation phe-
nomena and would allow us to construct explicitly an optimal control law.

1.4 Course outline

The objective of this document is to describe a systematic approach to the numerical
solution of these nonlinear nonconvex decision problems. Our strategy will be as follows:

1. the problem is relaxed and linearized to an LP on measures, interpreted as the dual
to an LP on continuous functions;

2. since the decision problems have polynomial data, the measure LP is formulated as
a moment LP;

3. a hierarchy of finite-dimensional LMI relaxations is used to solve the moment LP
numerically, with guarantees of asymptotic, and sometimes finite convergence.

Since we do not assume that the reader is familiar with SDP and the geometry of LMIs,
the document starts with an introductory Chapter 2 on finite-dimensional conic program-
ming. In Chapter 3, our approach is applied to nonconvex finite-dimensional polynomial
optimization. Finally, we conclude with Chapter 4 on nonconvex infinite-dimensional
optimization on solutions of polynomial differential equations, and a last Chapter 5 on
extensions to polynomial optimal control.
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Chapter 2

Conic optimization

2.1 Convex cones

In this section we describe linear programming over convex cones in finite dimensional
Euclidean spaces.

Definition 2.1 (Convex set) A set K is convex if x1, x2 ∈ K implies λx1 +(1−λ)x2 ∈
K for all λ ∈ [0, 1].

Geometrically speaking, a set is convex whenever the line segment linking two of its points
belongs to the set.

Definition 2.2 (Convex hull) Given a set K, its convex hull, denoted by conv K, is
the smallest closed convex set which contains K.

The convex hull can be expressed as

conv K :=

{
N∑
k=1

λkxk : N ∈ N, xk ∈ K, λk ≥ 0,
N∑
k=1

λk = 1

}
.

The convex hull of finitely many points conv{x1, . . . , xN} is a polytope with vertices at
these points. A theorem by Carathéodory states that given a set K ⊂ Rn, every point of
conv K can be expressed as

∑n+1
k=1 λkxk for some choice of xk ∈ K, λk ≥ 0,

∑n+1
k=1 λk = 1.

Definition 2.3 (Cone) A set K is a cone if λ ≥ 0, x ∈ K implies λx ∈ K.

It follows that a convex cone is a set which is invariant under addition and multiplication
by non-negative scalars.

Definition 2.4 (Dual space) The dual of a vector space V is the space V ′ of all con-
tinuous linear functionals on V .

8



The dual space consists of continuous functionals, so it depends on the topology, but we
will not discuss this point here as our spaces are mostly finite-dimensional. To a pair
(V, V ′) of primal-dual spaces we can associate a duality 〈x, y〉 : (V, V ′) → R. If V = Rn

then V ′ = V and the duality is the standard scalar product

〈x, y〉 := x′y =
n∑
k=1

xkyk

where the prime, applied to a vector or a matrix, denotes the transpose.

When applied to a cone, the prime denotes the dual cone:

Definition 2.5 (Dual cone) The dual of a cone K is the cone

K ′ := {y ∈ Rn : 〈x, y〉 ≥ 0, ∀x ∈ K}.

Geometrically, the dual cone ofK is the set of all nonnegative continuous linear functionals
on K. Notice that the dual K ′ is always a closed convex cone and that K ′′ is the closure
of the conic hull, i.e. the smallest convex cone that contains K. In particular, if K is a
closed convex cone, then K ′′ = K. A cone K such that K ′ = K is called self-dual.

A cone K is pointed if K ∩ (−K) = {0} and solid if the interior of K is not empty. A
cone which is convex, closed, pointed and solid is called a proper cone. The dual cone of
a proper cone is also a proper cone. A proper cone K induces a partial order (a binary
relation that is reflexive, antisymmetric and transitive) on the vector space: x1 ≥ x2 if
and only if x1 − x2 ∈ K.

Definition 2.6 (Linear cone) The linear cone, or positive orthant, is the set

{x ∈ Rn : xk ≥ 0, k = 1, . . . , n}.

Definition 2.7 (Quadratic cone) The quadratic cone, or Lorentz cone, is the set

{x ∈ Rn : x1 ≥
√
x22 + · · ·+ x2n}.

Let Sn denote the Euclidean space of n-by-n symmetric matrices of Rn×n, equipped with
the inner product

〈X, Y 〉 := traceX ′Y =
n∑
i=1

n∑
j=1

xijyij

defined for two matrices X, Y with respective entries xij, yij, i, j = 1, . . . , n.

Definition 2.8 (Gram matrix) Given a real quadratic form f : Rn → R, the (unique)
matrix X ∈ Sn such that f(y) = y′Xy is called the Gram matrix of f .

Definition 2.9 (Positive semidefinite matrix) A matrix is positive semidefinite when
it is the Gram matrix of a nonnegative quadratic form.
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In other words, a matrix X ∈ Sn is positive semidefinite, denoted by X ≥ 0, if and only
if y′Xy ≥ 0, ∀y ∈ Rn or equivalently, if and only if the minimum eigenvalue of X is
non-negative. This last statement makes sense since symmetric matrices have only real
eigenvalues. Note that X ≥ 0 is not meant as a nonnegativity constraint on the individual
entries of matrix X. The set of all nonnegative quadratic forms, or equivalently, or all
positive semdefinite matrices, is a cone that we will use systematically in our further
developments.

Definition 2.10 (Semidefinite cone) The semidefinite cone is the set

{X ∈ Sn : X ≥ 0}.

Proposition 2.1 (Self-dual cones) The linear, quadratic and semidefinite cones are
self-dual convex cones.

Note finally that if K = Rn is interpreted as a cone, then its dual K ′ = {0} is the zero
cone, which contains only the zero vector of Rn.

2.2 Primal and dual conic problems

Conic programming is linear programming in a convex cone K: we want to minimize
a linear function over the intersection of K with an affine subspace:

p∗ = inf c′x
s.t. Ax = b

x ∈ K
(2.1)

where the infimum is w.r.t. a vector x ∈ Rn to be found, and the given problem data
consist of a matrix A ∈ Rm×n, a vector b ∈ Rm and a vector c ∈ Rn. Note that the
feasibility set {x ∈ Rn : Ax = b, x ∈ K} is not necessarily closed, so that in general we
speak of an infimum, not of a minimum.

If K = Rn, the whole Euclidean space, or free cone, then problem (2.1) amounts to
solving a linear system of equations. If K is the linear cone, then solving problem (2.1) is
called linear programming (LP). If K is the quadratic cone, then this is called (convex)
quadratic programming (QP). If K is the semidefinite cone, then this is called (linear)
semidefinite programming (SDP).

In standard mathematical programming terminology, problem (2.1) is called the primal
problem, and p∗ denotes its infimum. The primal conic problem has a dual conic problem:

d∗ = sup b′y
s.t. z = c− A′y

z ∈ K ′.
(2.2)

Note that from Proposition 2.1, if K is the direct product of linear, quadratic and semidef-
inite cones, then K ′ = K. If K contains a free cone, then the corresponding components
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in K ′ are zero: we can enforce equality constraints on some entries in vector z in dual
problem (2.2), and they correspond to unrestricted entries in vector x in primal problem
(2.1).

Example 2.1 If K is the direct product of a 2-dimensional free cone with a 2-dimensional
linear cone and a 2-dimensional semidefinite cone, then in primal problem (2.1) the con-
straint x ∈ K ⊂ R7 can be expressed entrywise as:

x1 free , x2 free,
x3 ≥ 0, x4 ≥ 0,(
x5 x6
x6 x7

)
≥ 0

and in dual problem (2.2) the constraint z ∈ K ′ ⊂ R7 can be expressed entrywise as:

z1 = 0, z2 = 0,
z3 ≥ 0, z4 ≥ 0,(
z5 z6
z6 z7

)
≥ 0.

If K consists of only one semidefinite cone, primal problem (2.1) can be written as follows:

p∗ = inf 〈C,X〉
s.t. AX = b

X ≥ 0
(2.3)

where the given problem data consist now of a linear operator A : Sn → Rm, a vector
b ∈ Rm and a matrix C ∈ Sn. The action of operator A is described entrywise as
〈Ak, X〉 = bk, for given matrices Ak ∈ Sn, k = 1, . . . ,m. The adjoint or dual operator
A′ : (Rm)′ = Rm → (Sn)′ = Sn is the unique linear map such that 〈A′y,X〉 = 〈y,AX〉 for
all X ∈ Sn and y ∈ Rm. More concretely, A′y =

∑m
k=1Akyk.

Primal SDP problem (2.3) has a dual SDP problem:

d∗ = sup 〈b, y〉
s.t. C −A′y ≥ 0

(2.4)

where the supremum is w.r.t. a vector y ∈ Rm.

Example 2.2 The primal SDP problem

p∗ = inf x11 + x22 + x33
s.t. −2x21 = 1

−2x31 = 1
−2x32 = 1 x11 x21 x31

x21 x22 x32
x31 x32 x33

 ≥ 0
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has a dual SDP problem

d∗ = sup y1 + y2 + y3

s.t.

 1 y1 y2
y1 1 y3
y2 y3 1

 ≥ 0.

Both problems share the data

A1 = −

 0 1 0
1 0 0
0 0 0

 , A2 = −

 0 0 1
0 0 0
1 0 0

 , A3 = −

 0 0 0
0 0 1
0 1 0


and

b =

 1
1
1

 , C =

 1 0 0
0 1 0
0 0 1


on the 3-dimensional semidefinite cone K = K ′.

2.3 Spectrahedra and LMIs

The convex feasibility sets of problems (2.1) and (2.2) are intersections of a convex cone
with an affine subspace. We would like to understand the geometry of these sets. In
particular, we would like to know whether a given convex set can be modeled like this.

The most general case relevant for our purposes is when K is the direct product of
semidefinite cones. Indeed, note first that every linear cone is the direct product of
one-dimensional quadratic cones, or equivalently, of one-dimensional semidefinite cones.
Second, note that a quadratic cone is a particular affine section of the semidefinite cone:

{x ∈ Rn : x1 ≥
√
x22 + · · ·+ x2n} = {x ∈ Rn :


x1 x2 · · · xn
x2 x1 0
...

. . .
...

xn 0 · · · x1

 ≥ 0}.

It follows that every set that can be represented as an affine section of direct products of
the linear and quadratic cone can be represented as an affine section of direct products
of the semidefinite cone. Finally, note that a direct product of semidefinite cones can be
expressed as an affine section of a single semidefinite cone, e.g.

{x ∈ R4 : x1 ≥ 0,

(
x2 x3
x3 x4

)
≥ 0} = {x ∈ R4 :

 x1 0 0
0 x2 x3
0 x3 x4

 ≥ 0}.

For this reason, in most of the remainder of this document, we consider a single semidef-
inite cone constraint.
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Figure 2.1: A spectrahedron.

Definition 2.11 (LMI) A linear matrix inequality (LMI) is a constraint

F0 +
n∑
k=1

xkFk ≥ 0

on a vector x ∈ Rn, where matrices Fk ∈ Sm, k = 0, 1, . . . , n are given.

Note that an LMI constraint is generally nonlinear, but it is always convex. To prove
convexity, rewrite the LMI constraint as

y′

(
F0 +

n∑
k=1

xkFk

)
y = (y′F0y) +

n∑
k=1

(y′Fky)xk ≥ 0

which models infinitely many linear constraints on x ∈ Rn, parametrized by y ∈ Rm.

Definition 2.12 (Spectrahedron, or LMI set) A spectrahedron is a set described by
an LMI:

{x ∈ Rn : F0 +
n∑
k=1

xkFk ≥ 0}

where matrices Fk ∈ Sm, k = 0, 1, . . . , n are given.

In other words, spectrahedra are affine sections of the semidefinite cone, or equivalently,
LMI sets. Note that in the case where matrices Fk, k = 0, 1, . . . , n all commute (e.g. if
they are all diagonal), the LMI reduces to m affine inequalities, and the spectrahedron
reduces to a polyhedron.

On Figure 2.1 we represent a spectrahedron in the case n = 3 and m = 5. We observe
that its boundary is almost everywhere smooth and curved outwards (by convexity), but
it also includes vertices and edges.

Let R[x] denote the ring of polynomials of the indeterminate x ∈ Rn with real coefficients.
Given a polynomial f ∈ R[x], we define its set of zeros, or level set, as {x ∈ Rn : f(x) = 0}.
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We define its open superlevel set as {x ∈ Rn : f(x) > 0}, and its closed superlevel set
as {x ∈ Rn : f(x) ≥ 0}. Note that these sets are defined in Rn, not in Cn, since in this
document we are mainly concerned with optimization.

Definition 2.13 (Algebraic set) An algebraic set is an intersection of finitely many
polynomial level sets.

Definition 2.14 (Semialgebraic set) A semialgebraic set is a union of finitely many
intersections of finitely many open polynomial superlevel sets.

Definition 2.15 (Closed basic semialgebraic set) A closed basic semialgebraic set is
an intersection of finitely many closed polynomial superlevel sets.

Now, let us denote by

F (x) := F0 +
n∑
k=1

xkFk

the affine symmetric matrix describing a spectrahedron, and build its characteristic poly-
nomial

t 7→ det (tIm + F (x)) =
m∑
k=0

fm−k(x)tk

which is monic, i.e. f0(x) = 1. Coefficients fk ∈ R[x], k = 1, . . . ,m are multivariate
polynomials called the defining polynomials of the spectrahedron. They are elementary
symmetric functions of the eigenvalues of F (x).

Proposition 2.2 (Spectrahedra are closed basic semialgebraic sets) A spectrahe-
dron can be expressed as follows:

{x ∈ Rn : F0 +
n∑
k=1

xkFk ≥ 0} = {x ∈ Rn : fk(x) ≥ 0, k = 1, . . . ,m}.

Example 2.3 (The pillow) As an elementary example, consider the pillow spectrahe-
dron

X := {x ∈ R3 : F (x) :=

 1 x1 x2
x1 1 x3
x2 x3 1

 ≥ 0}

and its defining polynomials

f1(x) = trace F (x) = 3,
f2(x) = 3− x21 − x22 − x23,
f3(x) = detF (x) = 1 + 2x1x2x3 − x21 − x22 − x23,

On Figure 2.2 we represent the Cayley cubic surface

{x ∈ R3 : f3(x) = 0}
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Figure 2.2: The Cayley cubic surface and its spectrahedron.

which is the algebraic closure of the boundary of the pillow spectrahedron (the inner convex
region)

X = {x ∈ R3 : f2(x) ≥ 0, f3(x) ≥ 0}.
In other words, the polynomial which vanishes along the boundary of X also vanishes
outside of X, along the Cayley cubic surface.

2.4 Spectrahedral shadows and lifted LMIs

We have seen that a spectrahedron is a closed basic semialgebraic set. Moreover, it is
a convex set. All spectrahedra are convex closed basic semialgebraic, so one may then
wonder conversely whether all convex closed basic semialgebraic sets are spectrahedra.
The answer is negative, even though we do not explain why in this document.

Proposition 2.3 (The TV screen is not a spectrahedron) The planar convex closed
basic semialgebraic set

{x ∈ R2 : 1− x41 − x42 ≥ 0}
is not a spectrahedron.

Consequently, in order to represent convex closed basic semialgebraic sets, we have to go
beyond affine sections of the semidefinite cone. This motivates the following definitions.

Definition 2.16 (Lifted LMI, liftings) A lifted LMI is a constraint

F0 +
n∑
k=1

xkFk +

p∑
l=1

ulGl ≥ 0
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on a vector x ∈ Rn, which implies additional variables u ∈ Rp called liftings, and where
matrices Fk ∈ Sm, k = 0, 1, . . . , n and Gl ∈ Sm, l = 1, . . . , p are given.

Definition 2.17 (Spectrahedral shadow, or lifted LMI set) A spectrahedral shadow
is the affine projection of a spectrahedron:

{x ∈ Rn : F0 +
n∑
k=1

xkFk +

p∑
l=1

ulGl ≥ 0, u ∈ Rp}

where matrices Fk ∈ Sm, k = 0, 1, . . . , n and Gl ∈ Sm, l = 1, . . . , p are given.

Spectrahedral shadows are also called semidefinite representable sets.

Example 2.4 (The TV-screen is a spectrahedral shadow) The planar convex closed
basic semialgebraic set

{x ∈ R2 : 1− x41 − x42 ≥ 0}

can be expressed as the spectrahedral shadow{
x ∈ R2 :

(
1− u1 u2
u2 1 + u1

)
≥ 0,

(
1 x1
x1 u1

)
≥ 0,

(
1 x2
x2 u2

)
≥ 0, u ∈ R2

}
.

Proposition 2.4 (Planar semialgebraic sets are spectrahedral shadows) Every pla-
nar convex closed semialgebraic set is a spectrahedral shadow.

Conjecture 2.1 (Are convex semialgebraic sets spectrahedral shadows ?) Every
convex closed semialgebraic set is a spectrahedral shadow.

2.5 SDP duality

In this section we sketch some algorithms for linear semidefinite programming (SDP). For
notational simplicity we consider only the case of a single semidefinite cone, with given
data A : Sn → Rm, b ∈ Rm and C ∈ Sn. We want to solve the primal SDP problem (2.3)
and its dual SDP problem (2.4) reproduced here for the reader’s convenience:

p∗ = inf 〈C,X〉
s.t. AX = b

X ≥ 0

d∗ = sup 〈b, y〉
s.t. Z = C −A′y

Z ≥ 0.

Define the feasibility sets

P := {X ∈ Sn : AX = b, X ≥ 0}, D := {y ∈ Rm : C −A′y ≥ 0}.

Most of the algorithms for solving SDP problems make use of the following elementary
duality properties.
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Proposition 2.5 (Weak duality) If P and D are nonempty, it holds p∗ ≥ d∗.

Indeed, if P and D are nonempty, there exist X ∈ P and y ∈ D. Letting Z := C −A′y
it holds

〈X,Z〉 = 〈C,X〉 − 〈b, y〉 ≥ 0

since X ≥ 0 and Z ≥ 0. In particular, this is true when X and y are optimal, and hence
〈X,Z〉 = p∗ − d∗ ≥ 0.

Proposition 2.6 (Strong duality) If P has nonempty interior and D is nonempty,
then the supremum d∗ is attained and p∗ = d∗. Similarly, if D has nonempty interior and
P is nonempty, then the infimum p∗ is attained and p∗ = d∗.

Note in passing that whenever X ≥ 0, Z ≥ 0, the scalar condition p∗ − d∗ = 〈X,Z〉 = 0
is equivalent to the nonsymmetric matrix condition XZ = 0 or to the symmetric matrix
condition XZ + ZX = 0.

2.6 Numerical SDP solvers

Here we briefly describe numerical methods, implemented in floating-point arithmetic,
to solve SDP problems. The most successful algorithms are primal-dual interior-point
methods.

A triple (X, y, Z) solves the primal-dual SDP problems (2.3)-(2.4) if and only if

AX = b, X ≥ 0 (primal feasibility)
A′y + Z = C, Z ≥ 0 (dual feasibility)

XZ = 0 (complementarity).

The key idea behind primal-dual interior-point methods is then to consider the nonlinear
system of equations

AX = b
A′y + Z = C

XZ = µIn

(2.5)

parametrized in the scalar µ > 0. These are necessary and sufficiently optimality condi-
tions for the strictly convex problem

inf 〈C,X〉+ µf(X)
s.t. AX = b

where f(X) := − log detX is a barrier function for the semidefinite cone (strictly convex
and finite in its interior, and infinite elsewhere). For this reason, scalar µ is called the
barrier parameter.

If P and D have nonempty interior, it can be shown that for a given µ > 0, system (2.5)
has a unique solution such that X > 0 and Z > 0, and hence the set {(X(µ), y(µ), Z(µ)) :
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µ > 0} defines a smooth curve parametrized by µ, called the central path. The interior-
point algorithm consists then in applying Newton’s method to minimize a weighted sum of
the linear objective function and the barrier function, by following the central path, letting
µ→ 0. Given initial feasible solutions, this generates a sequence of feasible solutions such
that the duality gap 〈C,X〉−〈b, y〉 is less that a given threshold ε > 0 after O(

√
n log ε−1)

iterations. Each Newton iteration requires:

• O(n2m) operations to evaluate the barrier function;

• O(n3m) operations to evaluate and store its gradient;

• O(n2m2) operations to evaluate and store its Hessian;

• O(m3) operations to solve the Newton linear system of equations.

A symmetric matrix of size n has O(n2) independent entries, so in general we may assume
that m = O(n2) and hence the dominating term in this rough complexity analysis comes
from the evaluation and storage of the Hessian of the barrier function. Data sparsity
and block structure must be exploited as much as possible in these steps. It follows that
a global worst-case asymptotic complexity estimate for solving a dense SDP problem is
O(n6.5 log ε−1). In practice the observed computational burden is much smaller, but it
strongly depends on the specific implementation and on the problem structure.

Newton’s method needs an initial feasible point, and if no such point is available, an
auxilliary SDP problem must be solved first. An elegant approach to bypass the search of
an initial point consists of embedding the primal-dual problem in a larger problem which
is its own dual and for which a trivial feasible starting point is known: this is the so-called
homogeneous self-dual embedding. A drawback of this approach is that iterates are primal
and dual feasible for the original SDP problems only when the barrier parameter vanishes.

The most successful semidefinite programming solvers are implementations of primal-dual
interior-point algorithms:

• SeDuMi, SDPT3, MOSEK: homogenous self-dual embedding;

• CSDP, SDPA: path-following predictor-corrector;

• DSDP: path-following with dual-scaling;

but there are also other implementations based on different algorithms:

• LMILAB: projective method;

• PENSDP: penalty and augmented Lagrangian.

There exist parallel implementations of CSDP and SDPA.

Most of these solvers are available under Matlab, and they are interfaced through the
parsers YALMIP and cvx. Some elementary SDP solver is available under Scilab and
Sage, and cvxopt is a Python interface with some SDP features. The solver CSDP can
be embedded in C language, the solver SDPA is also available with Python interface, and
PENSDP is available as a standalone solver or called in Fortran or C language.
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2.7 Rigorous SDP solvers

The numerical methods described in the previous sections are implementable in floating-
point arthimetic, but very little is known about backward stability of these algorithms.
More annoyingly, it is difficult to estimate or bound the conditioning of a SDP problem,
which implies that none of these numerical solvers can provide a priori guarantees about
the quality of their output, even for a restricted problem class.

To address this issue, various strategies can be followed:

• multiprecision arithmetic;

• interval arithmetic;

• symbolic computation.

Higher precision or arbitrary precision arithmetic allows to deal with better floating-
point approximations of real numbers, at the price of an increased computational burden.
Currently, the solver SDPA is available in quad-double precision, double-double precision
and arbitrary precision arithmetic.

Interval arithmetic can be used to obtain rigorous bounds on the output of numerical
SDP solvers. A Matlab implementation of a verified SDP solver is VSDP. It relies on the
Intlab toolbox for interval computations.

Symbolic computation can be used to solve SDP problems exactly, by solving (e.g. with
Gröbner basis techniques) the quadratic system of equations arising from optimality con-
ditions. Alternatively, feasible points in spectrahedra can be obtained by techniques for
finding real solutions of systems of polynomial equations and inequalities.

To justify further the need for these techniques, note first that there are SDP problems
with integer data with no solution among the rationals:

Example 2.5 (Irrational optimal solution) The problem

sup y

s.t.

(
1 y
y 2

)
≥ 0

has solution y∗ =
√

2.

Example 2.6 (Irrational spectrahedron)

{y ∈ R :

(
1 y
y 2

)
≥ 0,

(
2y 2
2 y

)
≥ 0} = {

√
2}.

In general, exact solutions of SDP problems must be found in algebraic extensions of the
ground field of the input data. Recall that when both primal and dual problems have
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nonempty interiors, solutions (X, y) are characterized by the optimality conditions (2.5)
with µ = 0, i.e.

〈Ak, X〉 = bk, k = 1, . . . ,m
X(C −

∑m
k=1 ykAk) = 0n.

(2.6)

This is a system of m+ n(n+ 1)/2 real linear and quadratic equations in m+ n(n+ 1)/2
real variables. If we have a basis for the nullspace of the operator A, we can remove
the first m equality constraints and derive a system of n(n+ 1)/2 quadratic equations in
n(n+ 1)/2 variables.

Example 2.7 (Irrational optimal solution, again) Optimality conditions for the prob-
lem of Example 2.5 are as follows:

−x21 = 1
x11 + yx21 = 0
x21 + yx22 = 0
yx21 + 2x22 = 0

⇐⇒

x11 = ±
√

2
x21 = −1

x22 = ±
√
2
2

y = ±
√

2

from which it follows that the primal-dual optimal solution is

X∗ =

( √
2 −1

−1
√
2
2

)
y∗ =

√
2.

In the classical Turing machine model of computation, an integer number N is encoded
in binary notation, so that its bit size is log2N + 1. The following spectrahedron with
integer coefficients has points with exponential bit size:

Example 2.8 (Exponential spectrahedron) Any point in the spectrahedron

{y ∈ Rm :

(
1 2
2 y1

)
≥ 0,

(
1 y1
y1 y2

)
≥ 0, · · · ,

(
1 ym−1

ym−1 ym

)
≥ 0}

satisfies ym ≥ 22m.

Example 2.9 (Algebraic solution) Consider the problem

sup y1 + y2 + y3

s.t.


1 + y3 y1 + y2 y2 y2 + y3
y1 + y2 1− y1 y2 − y3 y2
y2 y2 − y3 1 + y2 y1 + y3

y2 + y3 y2 y1 + y3 1− y3

 ≥ 0.

Optimality conditions (2.6) yield 13 equations in 13 unknowns. Using Gröbner basis
techniques, it is found that these equations have 26 complex solutions. The optimal first
variable y∗1 is the root of a degree 26 univariate polynomial with integer coefficients. This
polynomial factors into a degree 16 term

403538653715069011y161 − 2480774864948860304y151 + · · ·+ 149571632340416
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and a degree 10 term

2018y101 − 12156y91 + 17811y81 + · · · − 163

both irreducible in Q[y1]. The optimal solution y∗1 is therefore an algebraic number of
degree 16 over Q, and it can be checked that it is also the case for the other 12 optimal
coordinates y∗2, y

∗
3, x

∗
11, x

∗
21, . . . , x

∗
44.

The above examples indicate that it can be quite costly to solve an SDP problem exactly.
The algebraic degree of an SDP problem is the degree of the algebraic extension of the
problem data coefficient field over which the solutions should be found. Even for small n
and m, this number can be very large.

2.8 Notes and references

References on convex analysis are [51] and [22]. See [6] for an elementary introduction
to convex optimization, and [3] for a more advanced treatment aimed at applied math-
ematicians and engineers. Systems control applications of linear matrix inequalities are
described in [5]. Good historical surveys on SDP are [58] and [57]. Classifications of sets
and functions that can be represented by affine sections and projections of LP, QP and
SDP cones can be found in [38], [3] and [35]. Elementary concepts of algebraic geometry
(algebraic sets, semialgebraic sets) are surveyed in [8], and connections between SDP, con-
vex geometry and algebraic geometry are explored in [4]. Proposition 2.2 is proved in [49,
Theorem 20]. Example 2.3 comes from the SDP relaxation of a 3-dimensional MAXCUT
problem, a classical problem of combinatorial optimization, see [33] and also [40, Exam-
ple 2] for the link with the Cayley cubic. The example of Proposition 2.3 was studied in
[16]. The proof of Proposition 2.4 can be found in [56]. Conjecture 2.1, a follow-up of a
question posed in [35, Section 4.3.1], can be found in [17]. A basic account of semidefinite
programming duality (Propositions 2.6 and 2.5), as well as Examples 2.6 and 2.8 can be
found in [33, Section 2]. A detailed study of complexity of SDP algorithms can be found
in [3, Section 4.6.3]. Techniques of real algebraic geometry for finding rational points in
convex semialgebraic sets are described in [55]. Example 2.9 is taken from [40, Example
4], which describes an approach to quantifying the complexity of solving exactly an SDP
problem. Hyperlinks to SDP solvers can be found easily, and the online documentation
of the interface YALMIP contains many pointers to webpages and software packages.
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Chapter 3

Finite-dimensional polynomial
optimization

3.1 Measures and moments

Let X be a compact subset of the Euclidean space Rn. Let B(X) denotes the Borel
σ-algebra, defined as the smallest collection of subsets of X which contains all open sets.

Definition 3.1 (Signed measure) A signed measure is a function µ : B(X) → R ∪
{∞} such that µ(∅) = 0 and µ(∪k∈NXk) =

∑
k∈N µ(Xk) for any pairwise disjoint Xk ∈

B(X).

Definition 3.2 (Positive measure) A positive measure is a signed measure which takes
only nonnegative values.

Positive measures on the Borel σ-algebra are often called Borel measures, and positive
measures which take finite values on compact sets are often called Radon measures.

Definition 3.3 (Support) Given a positive measure µ its support spt µ is the closed
set of all points x such that µ(A) > 0 for every neighborhood A of x. We say that µ is
supported on a set A whenever spt µ ⊂ A.

Definition 3.4 (Probability measure) A probability measure µ on X is a positive
measure such that µ(X) = 1.

Let us denote by M+(X) the cone of positive measures supported on X, and by P(X)
the set of probability measures supported on X. Geometrically, P(X) is an affine section
of M+(X).

Example 3.1 (Lebesgue measure) The Lebesgue measure on Rn, also called uniform
measure, denoted λ, is a positive measure returning the volume of a set A. For instance,
when n = 1 and a ≤ b, λ([a, b]) = b− a.
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Example 3.2 (Dirac measure) The Dirac measure at x = ξ, denoted ξ(dx) or δx=ξ,
is a probability measure such that δξ(A) = 1 if ξ ∈ A, and δξ(A) = 0 if ξ /∈ A.

For a given compact set X ⊂ Rn, let M (X) denote the Banach space of signed measures
supported on X, so that a measure µ ∈ M (X) can be interpreted as a function that
takes any subset of X and returns a real number. Alternatively, elements of M (X) can
be interpreted as continuous linear functionals acting on the Banach space of continuous
functions C (X), that is, as elements of the dual space C (X)′, see Definition 2.4. The
action of a measure µ ∈ M (X) on a test function v ∈ C (X) can be modeled with the
duality pairing

〈v, µ〉 :=

∫
X

v(x) dµ(x).

Let us denote by C+(X) the cone of positive continuous functions on X, whose dual can
be identified to the cone of positive measures on X, i.e. M+(X) = C+(X)′.

Definition 3.5 (Monomial) Given a real vector x ∈ Rn and an integer vector α ∈ Nn,
a monomial is defined as

xα :=
n∏
k=1

xαk
k .

The degree of a monomial with exponent α ∈ Nn is equal to |α| :=
∑n

k=1 αk.

Definition 3.6 (Moment) Given a measure µ ∈M (X), the real number

yα :=

∫
X

xαµ(dx) (3.1)

is called its moment of order α ∈ Nn.

Example 3.3 For x ∈ R2, second order moments are

y20 =

∫
x21µ(dx), y11 =

∫
x1x2µ(dx), y02 =

∫
x22µ(dx).

The sequence (yα)α∈Nn is called the sequence of moments of the measure µ, and given
d ∈ N, the truncated sequence (yα)|α|≤d is the vector of moments of degree d.

Definition 3.7 (Representing measure) If y is the sequence of moments of a measure
µ, i.e. if identity (3.1) holds for all α ∈ Nn, we say that µ is a representing measure for
y.

A basic problem in the theory of moments concerns the characterization of (infinite or
truncated) sequences that are moments of some measure. Practically speaking, instead of
manipulating a measure, which is a rather abstract object, we manipulate its moments.
Indeed, a measure on a compact set is uniquely determined by the (infinite) sequence of
its moments.
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3.2 Riesz functional, moment and localizing matrices

Measures on X ⊂ Rn are manipulated with their moments, i.e. via their actions on mono-
mials. The choice of monomials (xα)α is motivated mainly for notational and simplicity
reasons. In particular, the product of two monomials is a monomial, i.e. xαxβ = xα+β.
Any other choice of basis (bα(x))α would be appropriate to manipulate measures, as soon
as the basis is dense w.r.t. the supremum norm in the space of continuous functions
C (X). Numerically speaking, other bases than monomials may be more appropriate, but
we do not elaborate further on this issue in this document.

In order to manipulate functions in C (X) we use polynomials. A polynomial p ∈ R[x] of
degree d ∈ N is understood as a linear combination of monomials:

p(x) :=
∑
|α|≤d

pαx
α

and p := (pα)|α|≤d is the vector of its coefficients in the monomial basis (xα)α. Note
that we use the same notation for a polynomial and for its vector of coefficients when no
ambiguity is possible. Otherwise we use the notation p(x) to emphasize that we deal with
the polynomial as a function, not as a vector.

Example 3.4 The polynomial

x ∈ R2 7→ p(x) = 1 + 2x2 + 3x21 + 4x1x2

has a vector of coefficients p ∈ R6 with entries p00 = 1, p10 = 0, p01 = 2, p20 = 3, p11 = 4,
p02 = 0.

Definition 3.8 (Riesz functional) Given a sequence y = (yα)α∈Nn, we define the Riesz
linear functional `y : R[x]→ R such that `y(x

α) = yα for all α ∈ Nn.

We can interpret the Riesz functional as an operator that linearizes polynomials. If
sequence y has a representing measure µ, integration of a polynomial p w.r.t. µ is obtained
by applying the Riesz functional `y on p, since

`y(p(x)) = `y(
∑

α pαx
α) =

∑
α pα`y(x

α) =
∑

α pαyα
=
∑

α pα
∫
xαµ(dx) =

∫ ∑
α pαx

αµ(dx) =
∫
p(x)µ(dx).

Note that formally the Riesz functional is the linear form p(x) 7→ `y(p(x)) and its existence
is independent of the choice of basis to represent polynomial p(x). However, for nota-
tional simplicity, we use the monomial basis and hence we represent explicitly the Riesz
functional with the inner product of the vector (pα)|α|≤d of coefficients of the polynomial
with the truncated sequence (yα)|α|≤d.

Example 3.5 For the polynomial of Example 3.4, the Riesz functional reads

p(x) = 1 + 2x2 + 3x21 + 4x1x2 7→ `y(p) = y00 + 2y01 + 3y20 + 4y11.
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If we apply the Riesz functional on the square of a polynomial p(x), then we obtain a
form which is quadratic in the coefficients of p(x):

Definition 3.9 (Moment matrix) The moment matrix of order d is the Gram matrix
of the quadratic form p(x) 7→ `y(p

2(x)) where polynomial p(x) has degree d, i.e. the matrix
Md(y) such that `y(p

2(x)) = p′Md(y)p.

Example 3.6 If n = 2 then

M0(y) = y00, M1(y) =

 y00 y10 y01
y10 y20 y11
y01 y11 y02

 , M2(y) =


y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

 .

Note that Md(y) ∈ S(n+d
n ) where(

n+ d

n

)
=

(
n+ d

d

)
=

(n+ d)!

n! d!

is the number of monomials of n variables of degree at most d. The rows and columns of
the moment matrix are indexed by vectors α ∈ Nn and β ∈ Nn. Inspection reveals that
indeed the entry (α, β) in the moment matrix is the moment yα+β. By construction, the
moment matrix Md(y) is symmetric and linear in y.

If we apply the Riesz functional on the product of the square of a polynomial p(x) of
degree d with a given polynomial q(x), then we obtain a form which is quadratic in the
coefficients of p(x).

Definition 3.10 (Localizing matrix) Given a polynomial q(x), its localizing matrix of
order d is the Gram matrix of the quadratic form p(x) 7→ `y(q(x)p2(x)) where polynomial
p(x) has degree d, i.e. the matrix Md(q y) such that `y(q(x)p2(x)) = p′Md(q y)p.

Note that we use the notation Md(q y) to emphasize the fact that the localizing matrix is
bilinear in q and y. When polynomial q(x) =

∑
α qαx

α is given, matrix Md(q y) is sym-
metric and linear in y. The localizing matrix can be interpreted as a linear combination
of moment matrices, in the sense that its entry (α, β) is equal to

∑
γ qγyα+β+γ.

Example 3.7 If n = 2 and q(x) = 1 + 2x1 + 3x2 then

M1(q y) =

 y00 + 2y10 + 3y01 y10 + 2y20 + 3y11 y01 + 2y11 + 3y02
y10 + 2y20 + 3y11 y20 + 2y30 + 3y21 y11 + 2y21 + 3y12
y01 + 2y11 + 3y02 y11 + 2y21 + 3y12 y02 + 2y12 + 3y03

 .

Finally, given an infinite-dimensional sequence y, let us denote the infinite dimensional
moment and localized matrices, or linear operators, as follows

M(y) := M∞(y), M(q y) := M∞(q y).
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3.3 Linking measures and moments

The matrices just introduced allow to explicitly model the constraint that a sequence y
has a representing measure µ on a compact basic semialgebraic set X. Under a mild
assumption on the representation of X, it turns out that this constraint is an infinite-
dimensional LMI.

Assumption 3.1 (Compactness) Assume that X is a compact basic semialgebraic set

X := {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . , nX}

for given pk ∈ R[x], k = 1, . . . , nX . Moreover, assume that one of the polynomial inequal-
ities pk(x) ≥ 0 is of the form R −

∑n
i=1 x

2
i ≥ 0 where R is a sufficiently large positive

constant.

On the one hand, Assumption 3.1 is a little bit stronger than compactness of X. On the
other hand, if we assume only that X is compact, this is without loss of generality that
a constraint can be added to the description of X so that Assumption 3.1 is satisfied.

Proposition 3.1 (Putinar’s Theorem) Let set X satisfy Assumption 3.1. Then se-
quence y has a representing measure in M+(X) if and only if M(y) ≥ 0 and M(pk y) ≥ 0,
k = 1, . . . , nX .

Note that if we have an equality constraint pk(x) = 0 instead of an inequality constraint in
the definition of X, the corresponding localizing constraint becomes M(pk y) = 0, which
is a set of linear equations in y.

Since matrices M(y) and M(pky) are symmetric and linear in y, sequences with represent-
ing measures belong to an infinite-dimensional spectrahedron, following the terminology
introduced in Section 2.3. To manipulate these objects, we will consider finite-dimensional
truncations.

3.4 Measure LP

Let X be the compact basic semialgebraic set defined above for given polynomials pk ∈
R[x], k = 1, . . . , nX , and satisfying Assumption 3.1. Let p0 ∈ R[x] be a given a polynomial.
Consider the optimization problem consisting of minimizing p0 over X, namely

p∗ = min p0(x)
s.t. pk(x) ≥ 0, k = 1, . . . , nX .

(3.2)

The above minimum is w.r.t. x ∈ Rn and since we assume that X is compact, the
minimum is attained at a given point x∗ ∈ X.

We do not have any convexity property on p0 or X, so that problem (3.2) may feature
several local minima, and possibly several global minima. In the sequel we describe a
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hierarchy of LMI relaxations of increasing size, indexed by a relaxation order, and that
generates an asymptotically convergent mononotically nondecreasing sequence of lower
bounds on p∗.

The key idea is to notice that nonconvex polynomial optimization problem (3.2) over
(finite-dimensional set) X ⊂ Rn is equivalent to a linear, hence convex, optimization
problem over the (infinite-dimensional set) of probability measures supported on X. More
specifically, consider the problem

p∗M = inf
∫
p0(x)µ(dx)

s.t.
∫
µ(dx) = 1

µ ∈M+(X)
(3.3)

which is linear in the decision variable µ, a probability measure supported on X.

Proposition 3.2 (Measure LP formulation of polynomial optimization) The in-
fimum in LP problem (3.3) is attained, and p∗M = p∗.

The proof is immediate: for any feasible ξ ∈ X, it holds p0(ξ) =
∫
p0(x)µ(dx) for the

Dirac measure µ = δξ, showing p∗ ≥ p∗M . Conversely, as p0(x) ≥ p∗ for all x ∈ X, it holds∫
X
p0(x)µ(dx) ≥

∫
X
p∗µ(dx) = p∗

∫
X
µ(dx) = p∗ since µ is a probability measure, which

shows that p∗M ≥ p∗. It follows that p∗M = p∗ and that the infimum in problem (3.3) is
attained by a Dirac measure µ = δx∗ where x∗ is a global optimum of problem (3.2).

3.5 Moment LP

In Section 2 we studied LP problems (2.1) in finite-dimensional cones. In the context of
polynomial optimization, we came up with infinite-dimensional LP (3.3) which is a special
instance of the measure LP

p∗ = inf 〈c, µ〉
s.t. Aµ = b

µ ∈M+(X)
(3.4)

where the decision variable µ is in the cone of nonnegative measures supported on X,
a given compact subset of Rn. Linear operator A : M (X) → Rm takes a measure and
returns an m-dimensional vector of real numbers. Vector b ∈ Rm is given. The objective
function is the duality pairing between a given continuous function c ∈ C (X) and µ. In
the specific case of problem (3.3), we have A : µ→

∫
µ, b = 1 and c = p0. Problem (3.4)

has a dual (or more rigorously, a predual) problem in the cone of nonnegative functions,
but we will not describe it in this document.

If the linear operator A is described through given continuous functions aj ∈ C (X),
j = 1, . . . ,m we can write the LP problem (3.4) more explicitly as

p∗ = inf
∫
X
c(x)µ(dx)

s.t.
∫
X
aj(x)µ(dx) = bj, j = 1, . . . ,m

µ ∈M+(X).
(3.5)
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Now suppose that all the functions are polynomials, i.e. aj(x) ∈ R[x], j = 1, . . . ,m,
c(x) ∈ R[x], so that measure µ can be manipulated via the sequence y := (yα)α∈N of its
moments (3.1). The measure LP (3.5) becomes a moment LP

p∗ = inf
∑

α cαyα
s.t.

∑
α ajαyα = bj, j = 1, . . . ,m

y has a representing measure µ ∈M+(X)
(3.6)

called a generalized problem of moments.

The idea is then to use the explicit LMI conditions of Section 3.3 to model the constraints
that a sequence has a representing measure. If the semialgebraic set

X := {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . , nX}

satisfies Assumption 3.1, problem (3.6) becomes

p∗ = inf
∑

α cαyα
s.t.

∑
α ajαyα = bj, j = 1, . . . ,m

M(y) ≥ 0, M(pk y) ≥ 0, k = 1, . . . , nX

where the constraints
∑

α ajαyα = bj, j = 1, . . . ,m model finitely many linear constraints
on infinitely many decision variables. In the sequel, we will consider finite-dimensional
truncations of this problem, and generate a hierarchy of LMI relaxations called Lasserre’s
hierarchy in the context of polynomial optimization.

Moment LP (3.6) has a dual in the cone of positive polynomials, and finite-dimensional
truncations of this problem correspond to the search of polynomial sum-of-squares repre-
sentations, which can be formulated with a hierarchy of dual LMI problems, but we will
not elaborate more on this point in this document.

3.6 Lasserre’s LMI hierarchy

Now remark that LP problem (3.3) is a special instance of the moment LP problem (3.5)
with data c(x) = p0(x) =

∑
α p0αx

α, a(x) = 1, b = 1, so that, as in Section 3.5, problem
(3.2) can be equivalently written as

p∗ = inf
∑

α p0αyα
s.t. y0 = 1

M(y) ≥ 0, M(pk y) ≥ 0, k = 1, . . . , nX .

Let us denote by rk the smallest integer not less than half the degree of polynomial pk,
k = 0, 1, . . . , nX , and let rX := max{1, r1, . . . , rnX

}. For r ≥ rX , consider Lasserre’s
LMI hierarchy

p∗r = inf
∑

α p0αyα
s.t. y0 = 1

Mr(y) ≥ 0, Mr−rk(pk y) ≥ 0, k = 1, . . . , nX .
(3.7)

The LMI constraints in this problem are truncated, or relaxed versions of the infinite-
dimensional LMI constraints of Proposition 3.1. When the relaxation order r ∈ N
tends to infinity, we obtain the following result.
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Proposition 3.3 (Lasserre’s LMI hierarchy converges) It holds p∗r ≤ p∗r+1 ≤ p∗

and limr→∞ p
∗
r = p∗.

Lasserre’s LMI relaxations (3.7) can be solved with semidefinite programming, see Chapter
2, and this provides us with a monotonically nondecreasing sequence of lower bounds on
the global minimum of nonconvex polynomial optimization problem (3.2).

Proposition 3.4 (Generic finite convergence) In the finite-dimensional space of co-
efficients of polynomials pk, k = 0, 1, . . . , nX defining problem (3.2), there is a low-
dimensional algebraic set which is such that if we choose an instance of problem (3.2)
outside of this set, then Lasserre’s LMI relaxations have finite convergence, i.e. there
exists a finite r∗ such that p∗r = p∗ for all r ≥ r∗.

Equivalently, finite convergence occurs under arbitrary small perturbations of the data of
problem (3.2), and problems for which finite convergence does not occur are exceptional
and degenerate in some sense.

Example 3.8 Consider the polynomial optimization problem

p∗ = min −x2
s.t. 3− 2x2 − x21 − x22 ≥ 0

−x1 − x2 − x1x2 ≥ 0
1 + x1x2 ≥ 0

where the minimum is w.r.t. x ∈ R2. The first LMI relaxation is

p∗1 = min −y01
s.t. y00 = 1 y00 y10 y01

y10 y20 y11
y01 y11 y02

 ≥ 0

3y00 − 2y01 − y20 − y02 ≥ 0
−y10 − y01 − y11 ≥ 0
y00 + y11 ≥ 0
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and the second LMI relaxation is

p∗2 = min −y01
s.t. y00 = 1

y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

 ≥ 0

 3y00 − 2y01 − y20 − y02 3y10 − 2y11 − y30 − y12 3y01 − 2y02 − y21 − y03
3y10 − 2y11 − y30 − y12 3y20 − 2y21 − y40 − y22 3y11 − 2y12 − y31 − y13
3y01 − 2y02 − y21 − y03 3y11 − 2y12 − y31 − y13 3y02 − 2y03 − y22 − y04

 ≥ 0 −y10 − y01 − y11 −y20 − y11 − y21 −y11 − y02 − y12−y20 − y11 − y21 −y30 − y21 − y31 −y21 − y12 − y22
−y11 − y02 − y12 −y21 − y12 − y22 −y12 − y03 − y13

 ≥ 0 y00 + y11 y10 + y21 y01 + y12
y10 + y21 y20 + y31 y11 + y22
y01 + y12 y11 + y22 y02 + y13

 ≥ 0.

It can be checked that p∗1 = −2 ≤ p∗2 = p∗ = −1+
√
5

2
. Note that Assumption 3.1 is satisfied

for this example, since the constraint 3 − 2x2 − x21 − x22 ≥ 0 certifies boundedness of the
feasibility set.

3.7 Global optimum recovery

From Proposition 3.4 we know that finite convergence of Lasserre’s LMI hierarchy is
ensured generically, yet we do not know a priori at which relaxation order it occurs. To
certify finite convergence, we can use the following condition.

Proposition 3.5 (Certificate of finite convergence) Let y∗ be the solution of LMI
problem (3.7) at a given relaxation order r ≥ rX . If

rankMr−rX (y∗) = rankMr(y
∗)

then p∗r = p∗.

If the moment matrix rank conditions of Proposition 3.5 are satisfied, then we can use
numerical linear algebra to extract rankMr(y

∗) global optima for problem (3.2). However,
we do not describe the algorithm in this document.

Proposition 3.6 (Rank-one moment matrix) The condition of Proposition 3.5 is sat-
isfied if

rankMr(y
∗) = 1.
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If the rank condition of Proposition 3.6 is satisfied, first order moments readily yield a
global optimum: x∗ = (y∗α)|α|=1.

Example 3.9 For the polynomial optimization problem of Example 3.8, we obtain at the
second LMI relaxation a rank-one matrix M2(y

∗) ≥ 0 and the global optimum x∗1 = y∗10 =
1−
√
5

2
, x∗2 = y∗01 = 1+

√
5

2
.

3.8 Complexity estimates

Consider a polynomial optimization problem

p∗ = min p0(x)
s.t. pk(x) ≥ 0, k = 1, . . . , nX

as in (3.2), with x ∈ Rn, and its hierarchy of LMI relaxations (3.7).

Let us denote by M the number of variables, i.e. the size of vector y, in the LMI relaxation
of order r. It is equal to the number of monomials of n variables of degree 2r, namely
M =

(
n+2r
n

)
. If the number of variables n is fixed (e.g. for a given polynomial optimization

problem) then M grows in O(rn), that is polynomially in the relaxation order r. If the
relaxation order r is fixed (say to the smallest possible value, the first LMI relaxation in
the hierarchy), then M grows in O(nr), that is polynomially in the number of variables
n.

In practice, given the current state-of-the-art in general-purpose SDP solvers and personal
computers, we can expect an LMI problem to be solved in a matter of a few minutes
provided the problem is reasonably well-conditioned and the number of variables M is
less than 5000, say.

3.9 Convex hulls of semialgebraic sets

Let us use the notations defined in Section 3.6, and let X be the compact basic semi-
algebraic set defined there and satisfying Assumption 3.1. For r ≥ rX consider the
spectrahedral shadow

Xd := {(yα)|α|=1 ∈ Rn : y0 = 1, Mr(y) ≥ 0, Mr−rk(pk y) ≥ 0, k = 1, . . . , nX}.

Proposition 3.7 (Convex outer approximations of semialgebraic sets) Xr is an
outer approximation of X, i.e. X ⊂ Xr. Moreover, Xr+1 ⊂ Xr, and X∞ = conv X.

The result is also true if X is a compact algebraic set, defined by finitely many polynomial
equations. In particular, if X is finite-dimensional, i.e. the union of a finite number of
points of Rn, then X∞ is a polytope.
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Figure 3.1: Nonconvex semialgebraic set X (in red).

Figure 3.2: First spectrahedral shadow X1 ⊃ X (in blue) with boundary of X (in red)
and suboptimal point (in green).
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Figure 3.3: Second spectrahedral shadow X2 ⊃ X (in blue) with boundary of X (in red)
and optimal point (in green).

Example 3.10 The polynomial optimization problem of Example 3.8 has a compact basic
semialgebraic feasible set

X = {x ∈ R2 : 3− 2x2 + x21 − x22 ≥ 0, −x1 − x2 − x1x2 ≥ 0, 1 + x1x2 ≥ 0}

represented in red on Figure 3.1. The first spectrahedral shadow X1 ⊃ X, corresponding
to the projection on the plane of first-order moments of the 5-dimensional spectrahedron
of the first LMI relaxation, is represented in blue on Figure 3.2. Also represented in
green is the point corresponding to the minimization of −y01, yielding the lower bound p∗1.
The second spectrahedral shadow X2 ⊃ X, corresponding to the projection of the plane of
first-order moments of the 14-dimensional spectrahedron of the second LMI relaxation, is
represented in blue on Figure 3.3. Also represented in green is the point corresponding
to the minimization of −y01, yielding the lower bound p∗2. Apparently, X2 = conv X, so
minimizing −x2 on X or −y01 on X2 makes no difference.

3.10 Software interfaces

A Matlab interface called GloptiPoly has been designed to construct Lasserre’s LMI re-
laxations in a format understandable by the SDP solver SeDuMi, but also any other SDP
solver interfaced via YALMIP. It can be used to construct an LMI relaxation (3.7) of given
order corresponding to a polynomial optimization problem (3.2) with given polynomial
data entered symbolically. More generally, it can be used to model generalized problems
of moments (3.6). A numerical algorithm is implemented in GloptiPoly to detect global
optimality of an LMI relaxation, using the rank tests of Propositions 3.5 and 3.6. The
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algorithm also extracts numerically the global optima from a singular value decomposi-
tion of the moment matrix. Another Matlab interface called SOSTOOLS was developed
independently and concurrently. It focuses on the dual polynomial sum-of-squares de-
compositions mentioned at the end of Section 3.5, but not described in this document.
Note however that there is no global optimality detection and global optima extraction
algorithm in SOSTOOLS. Specialized moment and sos modules are available in the inter-
face YALMIP that implement some of the algorithms of GloptiPoly and SOSTOOLS. For
sparse polynomial optimization problems (with polynomial data featuring a few number
of nonzero monomials), a specialized interface called SparsePOP is available. It generates
reduced-size LMI relaxations by exploiting the problem structure.

Note that these interfaces only generate the LMI relaxations in a format understandable
by general-purpose SDP solvers. There is currently no working implementation of a
dedicated SDP solver for problems coming from polynomial optimization.

3.11 Back to the motivating example

Let us address the eigenvalue assignment problem of Section 1.1. We formulate it as a
nonconvex polynomial optimization problem

min p0(x)
s.t. pk(x) = 0, k = 1, . . . , n

where the objective function is a positive definite convex quadratic form

p0(x) :=
n∑

i,j=1

(xi − xj)2.

This choice is motivated by physical reasons, and it corresponds to the search of a solution
x with entries xi as identical as possible.

First, let us generate the system of polynomial equations pk(x) = 0, k = 1, . . . , n with the
following Maple script:

with(LinearAlgebra):with(PolynomialTools):

n:=3:B:=Matrix(n):for i from 1 to n-1 do

B(i,i):=2: B(i,i+1):=-1: B(i+1,i):=-1:

end do: B(n,n):=(n+1)/n;

K:=Matrix(n,Vector(n,symbol=k),shape=diagonal):

q:=product(x-1/((2*j)^2-1),j=1..n):

p:=CoefficientList(collect(charpoly(MatrixInverse(B).F,x)-q,x),x);

For n = 3 this code generates the following polynomials

p1(x) = 5
6
x1 + 4

3
x2 + 3

2
x3 − 3

7

p2(x) = 2
3
x1x2 + x1x3 + x2x3 − 53

1575

p3(x) = 1
2
x1x2x3 − 1

1575
.
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These polynomials are then converted into Matlab format, and we use the following
GloptiPoly code for inputing problem and solving the smallest possible LMI relaxation,
i.e. r = 2 in problem (3.7):

mpol x 3

X = [5/6*x(1)+4/3*x(2)+3/2*x(3)-3/7

2/3*x(1)*x(2)+x(1)*x(3)+x(2)*x(3)-53/1575

1/2*x(1)*x(2)*x(3)-1/1575];

obj = 0;

for i = 1:length(x)

for j = 1:length(x)

obj = obj+(x(i)-x(j))^2;

end

end

P = msdp(min(obj),X==0);

[stat,obj] = msol(P);

double(x)

With this code and the SDP solver SeDuMi, we obtain the unique solution

x ≈ (9.3786 · 10−2, 8.6296 · 10−2, 1.5690 · 10−1)

(to 5 significant digits) certified numerically by a rank one moment matrix, see Proposition
3.6, after less than one second of CPU time on a standard desktop computer.

The cases n = 2, 3, 4, 5 are solved very easily (in a few seconds) but the solution (obtained
with SeDuMi) is not very accurate. We have not investigated the possibility of refining
the solution with e.g. Newton’s method. We have not investigated either the possibility
of certifying rigorously the solution using e.g. VSDP or multiprecision arithmetic.

The case n = 6 is solved in a few minutes, and the case n = 7 is significantly harder: it
takes a few hours to be solved. Finally, solving the case n = 8 takes approximately 15
hours on our computer.

3.12 Notes and references

Accessible introductions to measure theory and relevant notions of functional analysis
and probability theory are [50, 23, 34, 53]. Lasserre’s hierarchy of LMI relaxations for
polynomial optimization were originally proposed in [27, 28] with a proof of convergence
(Proposition 3.3) relying on Putinar’s Positivstellensatz (Proposition 3.1) described in
[46]. The genericity result of Proposition 3.4 is described in [39]. Examples 3.8 and
3.10 are from [18]. The rank condition of Proposition 3.5 relies on flat extension results
by Curto and Fialkow, see e.g. [9]. The algorithm implemented in GloptiPoly for ex-
tracting global optima was described in [19], see also [32] and [30] for more comprensive
descriptions. The use of dual polynomial sum-of-squares was proposed in [41], see also [4].
Optimization over polynomial sum-of-squares and more generally squared functional sys-
tems and the connection with SDP was studied in [37], mostly in the univariate case. An
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excellent survey of this material (on both the primal problems on moments and the dual
problems on polynomial sum-of-squares) is [32], and the reader is refered to [30] for a more
advanced treatment. The outer approximation result of Proposition 3.7 follows from the
convergence proof of Lasserre’s relaxation [28] and elementary duality arguments. Finally,
the structured eigenvalue assignment problem of Sections 1.1 and 3.11 is comprehensively
described in [14].
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Chapter 4

Infinite-dimensional polynomial
optimization

We extend the approach of the previous chapter to optimization over the infinite-dimensional
sets of solutions of ordinary differential equations with polynomial vector fields.

4.1 Occupation measures

Let us consider the nonlinear ordinary differential equation (ODE)

ẋ(t) = f(t, x(t)) (4.1)

for t ∈ [0, T ] with a given terminal time T > 0, where x : [0, T ]→ Rn is a time-dependent
n-dimensional state vector, and vector field f : [0, T ]×Rn → Rn is a smooth map. Given
a set X ⊂ Rn, we assume that dynamics f and terminal time T are such that there is
a solution to the Cauchy problem for ODE (4.1). Since vector field f is smooth, this
solution is unique for any given initial condition x(0) = x0 ∈ X. Any such solution, or
trajectory, x(t) is an absolutely continuous function of time with values in X, and to
emphasize the dependence of the solution on the initial condition we write x(t | x0).
Now think of initial condition x0 as a random variable in X, or more abstractly as a
probability measure ξ0 ∈ M+(X), that is a map from the Borel σ-algebra B(X) of
subsets of X to the interval [0, 1] ⊂ R such that ξ0(X) = 1. For example, the expected
value of x0 is the vector E[x0] =

∫
X
x ξ0(dx) of first order moments of ξ0.

Now solve ODE (4.1) for a trajectory, given this random initial condition. At each time t,
the state can also be interpreted as a random variable, i.e. a probability measure that we
denote by ξ ∈M+(X). We say that the measure is transported by the flow of the ODE.
We also use the notation ξ(dx | t) if we want to emphasize the fact that ξ is a conditional
probability measure, or stochastic kernel, i.e. a probability measure acting on subsets of
B(X) for each given, or frozen value of t.

This one-dimensional family, or path of measures, satisfies a partial differential equation
(PDE) which turns out to be linear in the space of probability measures. This PDE is
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usually called Liouville’s equation. Conversely, the nonlinear ODE follows by applying
Cauchy’s method of characteristics to the linear transport PDE.

Let us now derive the Liouville equation explicitly.

Definition 4.1 (Indicator function) The indicator function of a set A is the function
x 7→ IA(x) such that IA(x) = 1 when x ∈ A and IA(x) = 0 when x /∈ A.

Definition 4.2 (Occupation measure) Given an initial condition x0, the occupation
measure of a trajectory x(t | x0) is defined by

µ(A×B | x0) :=

∫
A

IB(x(t | x0))dt

for all A ∈ B([0, T ]) and B ∈ B(X).

A geometric interpretation is that µ measures the time spent by the graph of the trajectory
(t, x(t | x0)) in a given subset A × B of [0, T ] × X. An analytic interpretation is that
integration w.r.t µ is equivalent to time-integration along a system trajectory, i.e.∫ T

0

v(t, x(t | x0))dt =

∫ T

0

∫
X

v(t, x)µ(dt, dx | x0)

for every test function v ∈ C ([0, T ]×X).

Example 4.1 (Occupation measure for a scalar linear system) Consider the one-
dimensional ODE ẋ(t) = −x(t) with initial condition x(0) = x0 ≥ 0, whose solution is
x(t) = x0e

−t. Given a ≥ 0, the occupation measure of the trajectory is such that

µ([0, 1]× [0, a] | x0) = 1 if x0 ≤ a
= 1− log x0

a
if a ≤ x0 ≤ ae

= 0 if x0 > ae

where e ≈ 2.71828 is Euler’s number.

Now define the linear operator L : C 1([0, T ]×X)→ C ([0, T ]×X) by

v 7→ Lv :=
∂v

∂t
+

n∑
i=1

∂v

∂xi
fi =

∂v

∂t
+ (grad v)′f

and its adjoint operator L′ : C ([0, T ]×X)′ → C 1([0, T ]×X)′ by the relation

〈v,L′µ〉 := 〈Lv, µ〉 =

∫ T

0

∫
X

Lv(t, x, u)µ(dt, dx)

for all µ ∈ M ([0, T ] × X) = C ([0, T ] × X)′ and v ∈ C 1([0, T ] × X). This operator can
also be expressed as

µ 7→ L′µ = −∂µ
∂t
−

n∑
i=1

∂(fiµ)

∂xi
= −∂µ

∂t
− div fµ
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where the derivatives of measures are understood in the sense of distributions (i.e. via
their action on smooth test functions), and the change of sign comes from the integation
by parts formula.

Given a test function v ∈ C 1([0, T ] × X) it follows from the above definition of the
occupation measure that

v(T, x(T | x0)) = v(0, x0) +
∫ T
0
v̇(t, x(t | x0))dt

= v(0, x0) +
∫ T
0
Lv(t, x(t | x0))dt

= v(0, x0) +
∫ T
0

∫
X
Lv(t, x)µ(dt, dx | x0).

(4.2)

Definition 4.3 (Initial measure) The initial measure ξ0 ∈ M+(X) is a probability
measure that rules the distribution in space of the initial condition x0.

Definition 4.4 (Average occupation measure) Given an initial measure ξ0, the av-
erage occupation measure of the flow of trajectories is defined by

µ(A×B) :=

∫
X

µ(A×B | x0)ξ0(dx0)

for all A ∈ B([0, T ]) and B ∈ B(X).

Example 4.2 Returning to the scalar linear ODE of Example 4.1, with initial conditions
uniformly distributed on [0, 1], i.e. ξ0(dx) = I[0,1](x)dx, the average occupation measure
is such that

µ([0, 1]× [0, a]) =

∫ 1

0

µ([0, 1]× [0, a] | x0)dx0 =

∫ a

0

dx0 +

∫ ae

a

(
1− log

x0
a

)
dx0 = a(e− 1)

for any given a ≥ 0.

Definition 4.5 (Terminal measure) The terminal measure ξT ∈P(X) is a probability
measure that rules the distribution in space of the terminal condition x(T ). It is defined
by

ξT (B) :=

∫
X

IB(x(T | x0))ξ0(dx0)

for all B ∈ B(X).

It follows by integrating equation (4.2) with respect to ξ0 that∫
X

v(T, x)ξT (dx) =

∫
X

v(0, x)ξ0(dx) +

∫ T

0

∫
X

Lv(t, x)µ(dt, dx)

or more concisely
〈v(T, .), ξT 〉 = 〈v(0, .), ξ0〉+ 〈Lv, µ〉 (4.3)

which is a linear equation linking the initial measure ξ0, the terminal measure ξT and the
occupation measure µ, for all v ∈ C 1([0, T ]×X).
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Letting
µ0(dt, dx) := δ0(dt) ξ0(dx), µT (dt, dx) := δT (dt) ξT (dx),

we can write 〈v(0, .), ξ0〉 = 〈v, µ0〉 and 〈v(T, .), ξT 〉 = 〈v, µT 〉. Then, equation (4.3) can be
rewritten equivalently using the adjoint linear operator as

〈v,L′µ〉 = 〈v, µT 〉 − 〈v, µ0〉

and since this equation is required to hold for all test functions v ∈ C 1([0, T ] × X), we
obtain a linear PDE on measures L′µ = µT − µ0 that we write

∂µ

∂t
+ div fµ = µ0 − µT (4.4)

where the derivatives should be understood in the sense of distributions. This equation
is classical in fluid mechanics and statistical physics, and it is called the equation of
conservation of mass, or the continuity equation, or the advection equation, or Liouville’s
equation.

Note that we can disintegrate the average occupation measure as follows

µ(dt, dx) = dt ξ(dx | t)

where ξ(. | t) ∈M+(X) is the conditional of µ w.r.t. t, and dt is the marginal of µ w.r.t.
t, here the Lebesgue measure. Liouville’s equation (4.4) can be also written as a linear
PDE satisfied by probability measure ξ, namely

∂ξ

∂t
+ div fξ = 0 (4.5)

with a given initial measure ξ(. | t = 0) = ξ0.

Proposition 4.1 Given ξ0 ∈M+(X), there is a unique solution ξ(.|t) ∈M+(X) solving
equation (4.5). Letting ξT := ξ(.|t = T ) ∈ M+(X), there is a unique solution µ ∈
M+([0, T ]×X) solving equation (4.4).

Note that in particular if ξ0 = δx0 , then ξ(.|t) = δx(t | x0) is the Dirac measure supported on
the trajectory x(t|x0) starting from x0. The geometric picture behind Liouville’s equation
(4.4) is that it encodes a superposition of all classical solutions solving the Cauchy problem
(4.1). The main advantage of the Liouville PDE is that it is a linear equation (in the
infinite-dimensional space of measures), whereas the original Cauchy ODE is nonlinear
(in the infinite-dimensional space of absolutely continuous trajectories).

4.2 Measure LP

Consider now the following dynamic optimization problem with polynomial differential
constraints

p∗ = inf
∫ T
0
l(t, x(t))dt

s.t. ẋ(t) = f(t, x(t)), x(t) ∈ X, t ∈ [0, T ]
x(0) ∈ X0, x(T ) ∈ XT

(4.6)
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with given polynomial dynamics f ∈ R[t, x] and Lagrangian l ∈ R[t, x], and state trajec-
tory x(t) constrained in a compact basic semialgebraic set

X = {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . , nX}

for given polynomials pk ∈ R[t, x]. Finally, initial and terminal states are constrained in
compact basic semialgebraic sets

X0 = {x ∈ Rn : p0k(x) ≥ 0, k = 1, . . . , n0} ⊂ X

and
XT = {x ∈ Rn : pTk(x) ≥ 0, k = 1, . . . , nT} ⊂ X

for given polynomials p0k, pTk ∈ R[x]. In problem (4.6) the infimum is w.r.t. a trajectory
x(t) starting in X0, ending in XT , and staying in X.

Using the framework described in Section 4.1, we encode the state trajectory x(t) in an
occupation measure µ and we come up with an infinite-dimensional LP problem

p∗ = inf
∫
lµ

s.t.
∫ (

∂v
∂t

+ (grad v)′f
)
µ =

∫
vµT −

∫
vµ0∫

µ0 = 1
(4.7)

for all smooth test functions v ∈ C 1([0, T ]×X) and where the infimum is w.r.t. occupation
measure µ ∈ M+([0, T ] × X), initial measure µ0 ∈ M+({0} × X0), terminal measure
µT ∈M+({T} ×XT ), and terminal time T . Note that µ0 resp. µT and T can be free, or
given. The mass of µ0 is one, which implies that the mass of µT is one, and the mass of
µ is equal to T , just choose v = 1 as a test function. More abstractly, problem (4.7) can
be written as a measure LP

p∗ = inf 〈l, µ〉
s.t. ∂µ

∂t
+ div fµ = µ0 − µT

〈1, µ0〉 = 1
(4.8)

where the linear constraint is Liouville’s equation, and the minimum is w.r.t. measures
(µ, µ0, µT ) ∈M+([0, T ]×X)×M+({0} ×X0)×M+({T} ×XT ).

Remark 4.1 (Autonomous case) If the terminal time T is free and the Lagrangian l
and the dynamics f do not depend explicitly on time t, then it can be shown without loss
of generality that in problem (4.8) the measures do not depend explicitly on time either,
and the terminal time is equal to the mass of the occupation measure, i.e. T = µ(X). The
measure LP becomes

p∗ = inf 〈l, µ〉
s.t. div fµ = µ0 − µT

〈1, µ0〉 = 1
(4.9)

where the minimum is taken w.r.t. (µ, µ0, µT ) ∈M+(X)×M+(X0)×M+(XT ).

Example 4.3 Consider again the scalar linear ODE of Example 4.1

ẋ = −x
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with initial measure µ0(dt, dx) := δ0(dt) ξ0(dx) with state distribution ξ0 ∈M+(X0) sup-
ported on

X0 := {x ∈ R : p0(x) :=
1

4
−
(
x− 3

2

)2

≥ 0},

with terminal measure µT (dt, dx) := δT (dt) ξT (dx) with state distribution ξT ∈ M+(XT )
supported on

XT := {x ∈ R : pT (x) :=
1

4
− x2 ≥ 0},

and with average occupation measure µ(dt, dx) := dt ξ(dx | t) with state conditional
ξ(dx | t) ∈M+(X) supported for each t ∈ [0, T ] on

X := {x ∈ R : p(x) := 4− x2 ≥ 0}.

We want to find trajectories minimizing the state energy
∫ T
0
x2(t)dt.

The linear measure problem (4.8) reads

p∗ = inf 〈x2, µ〉
s.t. ∂µ

∂t
− ∂(xµ)

∂x
= µ0 − µT

〈1, µ0〉 = 1

where the minimum is w.r.t. terminal time T and nonnegative measures µ, µ0 and µT
supported respectively on [0, T ]×X, {0} ×X0 and {T} ×XT .

This problem can be solved analytically, with optimal trajectory x(t) = e−t leaving X0 at
x(0) = 1 and reaching XT at x(T ) = 1

2
for T = log 2 ≈ 0.6931. So the optimal measures

solving the above LP are

µ(dt, dx) = dt δe−t(dx), µ0(dt, dx) = δ0(dt) δ1(dx), µT (dt, dx) = δlog 2(dt) δ 1
2
(dx)

and p∗ =
∫ log 2

0
e−2tdt = 3

8
.

Alternatively, following Remark 4.1, since the trajectory optimization problem is au-
tonomous, we can also formulate the measure LP problem

p∗ = inf 〈x2, µ〉
s.t. −∂(xµ)

∂x
= µ0 − µT

〈1, µ0〉 = 1

w.r.t. nonnegative measures µ, µ0 and µT supported respectively on X, X0 and XT , and
the optimal solution of the problem is now

µ(dx) =

∫ T

0

δe−t(dx)dt, µ0(dx) = δ1(dx), µT (dx) = δ 1
2
(dx).

4.3 Moment LP and LMI relaxations

Let us write problem (4.8) as as special instance of a more general measure LP

p∗ = inf 〈c, ν〉
s.t. Aν = β

ν ∈M n
+
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where the decision variable is an n-dimensional vector of nonnegative measures ν. Linear
operator A : M n → Mm takes an n-dimensional vector of measures and returns an m-
dimensional vector of measures. The right hand side β ∈Mm is a given m-dimensional
vector of measures. The objective function is the duality pairing between a given n-
dimensional vector of continuous functions c ∈ C n and ν, i.e. 〈c, ν〉 =

∑n
i=1〈ci, νi〉 =∑n

i=1

∫
ciνi. If we suppose that all the functions are polynomials, i.e. aij(x) ∈ R[x],

ci(x) ∈ R[x], i = 1, . . . , n, j = 1, . . . ,m, then each measure νi can be manipulated via the
sequence yi := (yiα)α∈N of its moments. The measure LP becomes a moment LP

p∗ = inf
∑n

i=1

∑
α ciαyiα

s.t.
∑n

i=1

∑
α aijαyiα = bj, j = 1, . . . ,m

yi has a representing measure νi ∈M+(Xi), i = 1, . . . , n.
(4.10)

As in Section 3.6, we use the explicit LMI conditions of Section 3.3 to model the constraints
that a sequence has a representing measure. If each semialgebraic set

Xi := {x ∈ Rn : pik(x) ≥ 0, k = 1, . . . , ni}

satisfies Assumption 3.1 for i = 1, . . . , n, problem (4.10) becomes

p∗ = inf
∑n

i=1

∑
α ciαyiα

s.t.
∑n

i=1

∑
α aijαyiα = bj, j = 1, . . . ,m

M(yi) ≥ 0, M(pik yi) ≥ 0, i = 1, . . . , n, k = 1, . . . , ni.

Then, in order to solve problem (4.8), we can build a hierarchy of finite-dimensional
LMI relaxations. This generates a monotonically nondecreasing sequence of lower bounds
asymptotically converging to p∗. Details are omitted.

Example 4.4 At the end of Example 4.3 we came up with the autonomous measure LP

p∗ = inf 〈x2, µ〉
s.t. −∂(xµ)

∂x
= µ0 − µT

〈1, µ0〉 = 1

in the decision variables (µ, µ0, µT ) ∈M+(X)×M+(X0)×M+(XT ). The corresponding
moment LP problem (4.10) reads

p∗ = inf
∫
x2µ(dx)

s.t. −α
∫
xαµ(dx) =

∫
xαµT (dx)−

∫
xαµ0(dx), α = 0, 1, 2, . . .∫

µ0(dx) = 1

or equivalently

p∗ = inf y2
s.t. −αyα = yT α − y0α, α = 0, 1, 2 . . .

y00 = 1
y has a representing measure µ ∈M+(X)
y0 has a representing measure µ0 ∈M+(X0)
yT has a representing measure µT ∈M+(XT )
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and the corresponding LMI relaxation of order r is given by

p∗r = inf y2
s.t. −αyα = yT α − y0α, α = 0, 1, . . . , 2r

y00 = 1
Mr(y) ≥ 0, Mr−1(p y) ≥ 0
Mr(y0) ≥ 0, Mr−1(p0 y0) ≥ 0
Mr(yT ) ≥ 0, Mr−1(pT yT ) ≥ 0

.

From the analytic solution described in Example 4.3 we can compute the entries of the
moment vector y of measure µ, namely y0 = log 2 and

yα =

∫
xαµ(dx) =

∫ log 2

0

e−αtdt =
1− 2−α

α
, α = 1, 2, . . .

4.4 Optimal trajectory recovery

Once an LMI relaxation of given order is solved, we expect vector y to contain approximate
moments of the optimal occupation measure corresponding to the optimal trajectory (if
it is unique), or at least a superposition (convex combination) of optimal trajectories.
In some cases, we can recover approximately the trajectory from the knowledge of its
moments. The dual LMI relaxations can be useful for this purpose. However, we do not
elaborate further on this point in this document.

Example 4.5 Solving the LMI relaxations of Example 4.4, we observe that the moment
matrices of the initial and terminal measures both have rank one (to numerical roundoff
errors), with respective moment vectors

y0α =

∫
xαµ0(dx) = 1, yT α =

∫
xαµT (dx) = 2−α, α = 0, 1, 2, . . .

From this it follows that µ0 = δ1, µT = δ 1
2

and the unique optimal trajectory starts from

x(0) = 1 and reaches x(T ) = 1
2
.

4.5 Extension to piecewise polynomial dynamics

The framework can be extended readily to differential equations with terminal cost and
piecewise polynomial dynamics

p∗ = inf f0(x(T )) +
∫ T
0
l(t, x(t))dt

s.t. ẋ(t) = fj(t, x(t)), x(t) ∈ Xj, j = 1, . . . , N, t ∈ [0, T ]
x(0) ∈ X0, x(T ) ∈ XT

(4.11)

with given polynomial dynamics fj ∈ R[t, x], Lagrangian l ∈ R[t, x], terminal cost
f0 ∈ R[x] and state trajectory x(t) constrained in compact basic semialgebraic sets Xj.
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We assume that the state-space partitioning sets, or cells Xj, are disjoint, i.e. all their
respective intersections have zero Lebesgue measure in Rn, and they all belong to a given
compact semialgebraic set X, e.g. a Euclidean ball of large radius. Initial and terminal
states are constrained in given compact basic semialgebraic sets X0 and XT .

We can then extend the measure LP framework to several measures µj, one supported on
each cell Xj, so that the global occupation measure is

µ =
N∑
j=1

µj.

The measure LP reads

p∗ = inf 〈f0, µT 〉+
∑N

j=1〈l, µj〉
s.t.

∑N
j=1

(
∂µj
∂t

+ div fjµj

)
+ µT = µ0

〈1, µ0〉 = 1.

It can solved numerically with a hiearchy of LMI relaxations as in Section 4.3.

4.6 Back to the motivating example

To address our motivating problem of Section 1.2 we formulate an optimization problem
(4.11) with systems dynamics defined as locally affine functions in three cells Xj, j = 1, 2, 3
corresponding respectively to the linear regime of the torque saturation

X1 = {x ∈ R2 : |F ′x| ≤ L}, f1(x) =

[
x1
−F ′x

]
the upper saturation regime

X2 = {x ∈ R2 : F ′x ≥ L}, f2(x) =

[
x1
−L

]
and the lower saturation regime

X3 = {x ∈ R2 : F ′x ≤ −L}, f3(x) =

[
x1
L

]
.

The objective function has no integral term and a concave quadratic terminal term f0(x) =
−x(T )Tx(T ) which we would like to minimize, so as to find trajectories with terminal
states of largest norm. If we can certify that for every initial state x(0) chosen in X0 the
final state x(T ) belongs to set included in the deadzone region, we have validated our
controlled system.

The resulting GloptiPoly script, implementing some elementary scaling strategies to im-
prove numerical behavior of the SDP solver, is as follows:
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I = 27500; % inertia

kp = 2475; kd = 19800; % controller gains

L = 380; % input saturation level

dz1 = 0.2*pi/180; dz2 = 0.05*pi/180; % deadzone levels

thetamax = 50; omegamax = 5; % bounds on initial conditions

epsilon = sqrt(1e-5); % bound on norm of terminal condition

T = 50; % final time

r = input(’order of relaxation =’); r = 2*r;

% measures

mpol(’x1’,2); m1 = meas(x1); % linear regime

mpol(’x2’,2); m2 = meas(x2); % upper sat

mpol(’x3’,2); m3 = meas(x3); % lower sat

mpol(’x0’,2); m0 = meas(x0); % initial

mpol(’xT’,2); mT = meas(xT); % terminal

% dynamics on normalized time range [0,1]

% saturation input y normalized in [-1,1]

K = -[kp kd]/L;

y1 = K*x1; f1 = T*[x1(2); L*y1/I]; % linear regime

y2 = K*x2; f2 = T*[x2(2); L/I]; % upper sat

y3 = K*x3; f3 = T*[x3(2); -L/I]; % lower set

% test functions for each measure = monomials

g1 = mmon(x1,r); g2 = mmon(x2,r); g3 = mmon(x3,r);

g0 = mmon(x0,r); gT = mmon(xT,r);

% unknown moments of initial measure

y0 = mom(g0);

% unknown moments of terminal measure

yT = mom(gT);

% input LMI moment problem

cost = mom(xT’*xT);

Ay = mom(diff(g1,x1)*f1)+...

mom(diff(g2,x2)*f2)+...

mom(diff(g3,x3)*f3); % dynamics

% trajectory constraints

X = [y1^2<=1; y2>=1; y3<=-1];

% initial constraints

X0 = [x0(1)^2<=thetamax^2, x0(2)^2<=omegamax^2];

% terminal constraints

XT = [xT’*xT<=epsilon^2];

% bounds on trajectory
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Figure 4.1: Torque input with lower saturation during approx. 7% of the time range.

B = [x1’*x1<=4; x2’*x2<=4; x3’*x3<=4];

% input LMI moment problem

P = msdp(max(cost), ...

mass(m1)+mass(m2)+mass(m3)==1, ...

mass(m0)==1, ...

Ay==yT-y0, ...

X, X0, XT, B);

% solve LMI moment problem

[status,obj] = msol(P)

With the help of this script and the SDP solver SeDuMi, we obtain the following sequence
of upper bounds (since we maximize) on the maximum squared Euclidean norm of the
final state:

relaxation order r 1 2 3 4
upper bound 1.0 · 10−5 1.0 · 10−5 1.0 · 10−5 1.0 · 10−5

CPU time (sec.) 0.2 0.5 0.7 0.9
number of moments 30 75 140 225

In the table we also indicate the CPU time (in seconds, on a standard desktop computer)
and the total number of moments (size of vector y in the LMI relaxation). We see that
the bound obtained at the first relaxation (r = 1) is not modified for higher relaxations.
This clearly indicates that all initial conditions are captured in the deadzone region at
time T , which is the box [−2, 2]10

−1π
180
× [−5, 5]10

−2π
180
⊃ {x ∈ R2 : xTx ≤ 10−5}.

If we want to use this approach to simulate a particular trajectory, in the code we must
modify the definition of the initial measure. For example for initial conditions x1(0) = 50,
x2(0) = −1, we must insert the following sequence:
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% given moments of initial measure = Dirac at x0

p = genpow(3,r); p = p(:,2:end); % powers

theta0 = 50; omega0 = -1; % in degrees

y0 = ones(size(p,1),1)*[theta0 omega0]*pi/180;

y0 = prod(y0.^p,2);

As previously, the sequence of bounds on the maximum squared Euclidean norm of the
final state is constantly equal to 1.0 · 10−5, and in the following table we represent as
functions of the relaxation order r the masses of measures µk, k = 1, 2, 3 which are
indicators of the time spent by the trajectory in the respective linear, upper saturation
and lower saturation regimes:

relaxation order r 1 2 3 4 5 6 7∫
dµ1 37 89 92 92 93 93 93∫
dµ2 32 5.3 0.74 0.30 0.21 0.15 0.17∫
dµ3 32 5.1 7.1 6.9 6.8 6.9 7.0

This indicates that most of the time (approx. 93%) is spent in the linear regime, with
approx. 7% of the time spent in the lower saturation regime, and a negligible amount of
time is spent in the upper saturation regime. This is confirmed by simulation, see Figure
4.1.

4.7 Notes and references

Historically, the idea of reformulating nonconvex nonlinear ordinary differential equations
(ODE) into convex LP, and especially linear partial differential equations (PDE) in the
space of probability measures, can be tracked back to the early 19th century. It was
Joseph Liouville in 1838 who first introduced the linear PDE involving the Jacobian of
the transformation exerted by the solution of an ODE on its initial condition [31]. The
idea was then largely expanded in Henri Poincaré’s work on dynamical systems at the
end of the 19th century, see in particular [43, Chapitre XII (Invariants intégraux)]. This
work was pursued in the 20th century in [25], [36, Chapter VI (Systems with an integral
invariant)] and more recently in the context of optimal transport by e.g. [47], [59] or [1].
The proof of Proposition 4.1 can be found e.g. in [1, Chapter 8]. Poincaré himself in [44,
Section IV] mentions the potential of formulating nonlinear ODEs as linear PDEs, and
this programme has been carried out to some extent by [7], see also [26], [24], [21]. Our
contribution is to apply the approach described in [29], see also [13], to address polynomial
trajectory optimization problems. The use of LMI and measures was also investigated in
[45] for building Lyapunov barrier certificates, and based on a dual to Lyapunov’s theorem
described in [48]. Our approach is similar, in the sense that optimization over systems
trajectories is formulated as an LP in the infinite-dimensional space of measures. This
LP problem is then approached as a generalized moment problem via a hierarchy of LMI
relaxations, following the strategy described extensively in [30]. Finally, our control law
validation problem of Sections 1.2 and 4.6 is comprehensively described in [20].
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Chapter 5

Polynomial optimal control

Our general setup for an optimal control problem is the following:

p∗ := inf
∫ T
0
l(t, x(t), u(t))dt

s.t. ẋ(t) = f(t, x(t), u(t)),
x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ],
x(0) ∈ X0, x(T ) ∈ XT

(5.1)

where the infimum is with respect to a control law u : [0, T ]→ Rm which is a measurable
function of time with values constrained to a given set U ⊂ Rm, and such that the resulting
state trajectory

x(t | x0, u) = x0 +

∫ t

0

f(s, x(s), u(s))ds

starts at x(0) = x0 in a given set X0, terminates at time T > 0 in a given set XT , and
stays in a given set X in between. It is assumed that the given dynamics f is smooth, so
that there is a unique trajectory given x0 and u, which motivates our notation x(t |x0, u).
Also given is a smooth Lagrangian l. The terminal time T is either given or free.

5.1 Controlled occupation measures

As in Chapter 4 we use occupation measures to model problem (5.1) as an infinite-
dimensional LP. The main difference however is that the occupation measures will now
depend on the control.

Definition 5.1 (Controlled occupation measure) Given an initial condition x0 and
a control law u(t), the controlled occupation measure of a trajectory x(t | x0, u) is defined
as

µ(A×B × C | x0, u) :=

∫
A

IB×C(x(t | x0, u), u(t))dt

for all A ∈ B([0, T ]), B ∈ B(X) and C ∈ B(U).
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A geometric interpretation is that µ measures the time spent by the graph of the trajectory
(t, x(t|x0, u), u(t)) in a given subset A×B×C of [0, T ]×X×U . An analytic interpretation
is that integration w.r.t µ is equivalent to time-integration along a system trajectory.

If the initial condition x0 ∈ X is not a vector, but an initial probability measure ξ0 ∈
M+(X), see Definition 4.3, we can proceed as in Section 4.1 and model the whole flow of
trajectories with a measure.

Definition 5.2 (Average controlled occupation measure) Given an initial measure
ξ0 and a control law u(t), the average controlled occupation measure of the flow of trajec-
tories is defined as

µ(A×B × C | u) :=

∫
X

µ(A×B × C | x0, u)ξ0(dx0)

for all A ∈ B([0, T ]), B ∈ B(X) and C ∈ B(U).

We also use the terminal measure ξT as in Definition 4.5, and let µ0 := δ0 ξ0, µT := δT ξT .
Measures µ, µ0 and µT are linked by a linear PDE. Let us now derive this equation with
the help of test functions v depending on t and x only. There is no dependence of v on the
control variable u since the control law is an unknown in optimal control problem (5.1).

Define the linear operator L : C 1([0, T ]×X)→ C ([0, T ]×X × U) by

v 7→ Lv :=
∂v

∂t
+ (grad v)′f

and its adjoint operator L′ : C ([0, T ]×X × U)′ → C 1([0, T ]×X)′ by

µ 7→ L′µ = −∂µ
∂t
− div fµ.

Given a test function v ∈ C 1([0, T ]×X), it holds

v(T, x(T )) = v(0, x(0)) +
∫ T
0
v̇(t, x(t | x0, u)dt

= v(0, x(0)) +
∫ T
0
Lv(t, x((t | x0, u), u(t))dt

= v(0, x(0)) +
∫ T
0

∫
X

∫
U
Lv(t, x, u)µ(dt, dx, du | x0, u)

and integrating w.r.t. ξ0 we obtain
∫
Lvµ =

∫
vµT −

∫
vµ0 for all v, which can be written

in the sense of distributions as L′µ = µT − µ0 or more explicitly

∂µ

∂t
+ div (fµ) = µ0 − µT . (5.2)

This is the controlled Liouville equation. The difference with the uncontrolled Liou-
ville equation (4.4) is that both µ and f now also depend on the control variable u. An
occupation measure µ satisfying equation (5.2) encodes state trajectories but also control
trajectories.
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5.2 Relaxed control

We can disintegrate the occupation measure as

µ(dt, dx, du) = dt ξ(dx | t) ω(du | t, x) (5.3)

where the three components are as follows:

• dt is the time marginal, the Lebesgue measure of time, corresponding to the property
that time flows uniformly;

• ξ(dx | t) ∈ M+(X) is the distribution of state conditional on t, or state stochastic
kernel, a probability measure on X for each t ∈ [0, T ], which models the state
interpreted as a time-dependent random variable;

• ω(du | t, x) ∈ M+(U) is the distribution of the control conditional on t and x,
or control stochastic kernel, a probability measure on U for each t ∈ [0, T ] and
x ∈ X, which models the control interpreted as a time- and state-dependent random
variable.

It means that instead of a control law u which is a measurable function of time in [0, T ]
with values in U , we have a relaxed control, a probability measure

ω ∈M+(U),

∫
ω = 1

parametrized in time t ∈ [0, T ] and space x ∈ X. Such parametrized probability measures
are called Young measures in the calculus of variations and PDE literature. Our control,
originally chosen as a measurable function (of time and state), is therefore relaxed to a
probability measure (parametrized in time and state). Observe that the space of prob-
ability measures is larger than any Lebesgue space, since for the particular choice of a
time-dependent Dirac measure

ω(du | t, x) = δu(t,x)

with u(t, x) ∈ U we retrieve a classical control law which is a function of time and state.

The controlled Liouville equation (5.2) can be written as∫
vµT −

∫
vµ0 =

∫
Lvµ

=
∫ T
0

∫
X

∫
U

(
∂v(t,x)
∂t

+ (grad v(t, x))′f(t, x, u)
)
ω(du | t, x)ξ(dx | t)dt

=
∫ T
0

∫
X

(
∂v(t,x)
∂t

+ (grad v(t, x))′
[∫
U
f(t, x, u)ω(du | t, x)

])
ξ(dx | t)dt

for all test functions v ∈ C 1([0, T ]×X). It is now apparent that the trajectories modeled
by the controlled Liouville equation are generated by a family of absolutely continuous
trajectories of the relaxed controlled ODE

ẋ(t) =

∫
U

f(t, x(t), u)ω(du | t, x).
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Indeed, in optimal control problem (5.1), the original control system

ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U (5.4)

can be interpreted as a differential inclusion

ẋ(t) ∈ f(t, x(t), U) := {f(t, x(t), u) : u ∈ U}

where the state velocity vector ẋ(t) can be chosen anywhere in the set f(t, x(t), U) ⊂ Rn.
In contrast, any triplet of measures (µ, µ0, µT ) satisfying the controlled Liouville equation
(5.2) corresponds to a family of trajectories of the relaxed, or convexified differential
inclusion

ẋ(t) ∈ conv f(t, x(t), U).

In that sense, the set of trajectories modeled by the controlled Liouville equation (5.2)
is larger than the set of trajectories of the control system (5.4). As will be seen in the
numerical example section, this is an advantage of the occupation measure framework, in
the sense that we will be able to construct relaxed or stochastic control laws that cannot
can obtained using functions.

Based on the above discussion, we can define the relaxed optimal control problem

p∗R := inf
∫ T
0
l(t, x(t), u(t))dt

s.t. ẋ(t) ∈ conv f(t, x(t), U),
x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ],
x(0) ∈ X0, x(T ) ∈ XT

(5.5)

and it holds p∗R ≤ p∗. Contrived optimal control problems (e.g. with stringent state
constraints) can be cooked up such that p∗R < p∗, but generically (in a sense to be defined
rigorously, but not in this document), the following assumption will be satisfied.

Assumption 5.1 (No relaxation gap) We assume that p∗R = p∗.

5.3 Measure LP

Using the controlled occupation measure and relaxed controls of the previous sections,
and under Assumption 5.1, relaxed optimal control problem (5.5) can be formulated as
an infinite-dimensional measure LP

p∗ = inf 〈l, µ〉
s.t. ∂µ

∂t
+ div fµ = µ0 − µT

〈1, µ0〉 = 1

where the infimum is w.r.t. measures (µ, µ0, µT ) ∈ M+([0, T ] × X × U) ×M+({0} ×
X0))×M+({T}×XT ). We can then rely on the results of Section 4.3 to build a hierarchy
of finite-dimensional LMI relaxations for this problem. This generates a monotonically
nondecreasing sequence of lower bounds asymptotically converging to p∗. Details are
omitted.
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Remark 5.1 (Autonomous case) If the terminal time T is free and the Lagrangian l
and the dynamics f do not depend explicitly on time t, then the measure LP becomes

p∗ = inf 〈l, µ〉
s.t. div fµ = µ0 − µT

〈1, µ0〉 = 1

where the minimum is now taken w.r.t. (µ, µ0, µT ) ∈M+(X×U)×M+(X0)×M+(XT ),
i.e. the measures do not depend explicitly on time either.

Example 5.1 (Linear quadratic regulator) Consider the elementary scalar linear quadratic
regulator problem

p∗ = inf
∫ T
0

(x2(t) + u2(t))dt
s.t. ẋ(t) = u(t), t ∈ [0, T ]

x(0) = 1, x(T ) = 0

with given initial and terminal conditions. The corresponding autonomous measure LP is

p∗ = inf 〈x2 + u2, µ〉
s.t. ∂( uµ)

∂x
= δ1 − δ0

where the minimum is w.r.t. occupation measure µ. Its moment LP problem reads

p∗ = inf
∫

(x2 + u2)µ(dx, du)
s.t. α

∫
xα−1uµ(dx, du) = −1, α = 0, 1, 2 . . .

or equivalently
p∗ = inf y20 + y02

s.t. y01 = 2y11 = 3y21 = · · · = −1
M(y) ≥ 0

where the minimum is w.r.t. the moments of the occupation measure

yα =

∫
xα1uα2µ(dx, du), α = 0, 1, 2 . . .

Solving the first LMI relaxation

p∗1 = inf y20 + y02
s.t. y01 = 2y11 = −1

M1(y) =

 y00 y10 y01
y10 y20 y11
y01 y11 y02

 ≥ 0.

with the SDP solver SeDuMi yields (rounded to 3 significant digits)

M1(y
∗) =

 3.66 1.00 −1.00
1.00 0.500 −0.500
−1.00 −0.500 0.500

 .
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This example can be solved analytically (with a scalar Riccati equation) and the solution
is the state-feedback u(t) = −x(t) corresponding to the optimal trajectory x(t) = e−t with
cost p∗ =

∫∞
0

2e−2tdt = 1 and the optimal occupation measure

µ(dx, du) =

∫ ∞
0

δe−t(dx)δ−e−t(du)dt

with moments

yα = (−1)α2

∫ ∞
0

e−(α1+α2)tdt, α ∈ N2

equal to y00 = ∞, y10 = 1, y01 = −1, y20 = 1
2
, y11 = −1

2
, y02 = 1

2
etc. We observe that

the numerical moments y∗ closely match, except the mass y00 which should approximate
the terminal time T . Note however that for this numerical value of T ≈ 3.66, the cost is∫ T
0

2e−2tdt ≈ 0.999 almost equal to the optimal value p∗ = 1.

5.4 Optimal control recovery

Once an LMI relaxation of given order is solved, we expect vector y to contain approximate
moments of the optimal occupation measure corresponding to the optimal trajectory (if
it is unique), or at least a superposition (convex combination) of optimal trajectories. To
recover the optimal control, or the optimal state trajectory, we can use the dual problem,
which is a relaxation of the Hamilton-Jacobi-Bellman PDE of optimal control. However,
we do not elaborate further on these techniques in this document.

5.5 Back to the motivating example

Let us come back to Bolza’s example of Section 1.3. We saw that the infimum can be
approached by a control sequence switching increasingly quickly between −1 and +1, so
the idea is to relax the ODE

ẋ(t) = f(t, x(t), u(t))

with the following differential equation

ẋ(t) =

∫
f(t, x(t), u)ω(du | t)

where ω(du|t) is a probability measure parametrized in t. State trajectories are then
obtained by integration w.r.t. time and control

x(t) = x(0) +

∫ t

0

∫
f(s, x(s), u)ω(du | s)ds.

Here for the Bolza example we choose

ω(du | t) =
1

2
(δu=−1 + δu=+1)

54



a time-independent weighted sum of two Dirac measures at u = −1 and u = +1. The
relaxed state trajectory is then equal to

x(t) = 1
2

(∫ t
0
f(s, x(s),−1)ds+

∫ t
0
f(s, x(s),+1)ds

)
= 1

2

(
−
∫ t
0
ds+

∫ t
0
ds
)

= 0

and the relaxed objective function is equal to∫ 1

0

∫
U
l(t, x(t), u)dω(u | t)dt = 1

2

(∫ 1

0
l(t, x(t),−1) +

∫ 1

0
l(t, x(t),+1)

)
=

∫ 1

0
x4(t)dt = 0

so that the infimum p∗ = 0 is reached.

The corresponding GloptiPoly script is as follows:

% initial point measure

mpol(’t0’); mpol(’x0’);

% occupation measure

mpol(’t’); mpol(’x’); mpol(’u’);

meas(t,2); meas(x,2); meas(u,2);

% final point measure

mpol(’tT’); mpol(’xT’,1);

meas(tT,3); meas(xT,3);

r = input(’order of relaxation =’); r = 2*r;

% define test function arrays

v = mmon([t;x],r);

v0 = mmon([t0; x0],r);

vT = mmon([tT; xT],r);

% dynamics f(x,u) = u

dvdt = diff(v,t) + diff(v,x)*u;

% assign initial point

assign([t0; x0],[ 0; 0]);

% input LMI moment problem

P = msdp (min(x^2 + (1-u^2)^2 ), ...

0 == mom(dvdt) + double(v0) - mom(vT), ...

t*(1-t) >= 0, u^2 <= 1, x^2 <= 1, ...

tT == 1, xT^2 <= 1);

% solve LMI moment problem

[status, obj] = msol(P)
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5.6 Notes and references

The use of relaxations and LP formulations of optimal control problems (on ordinary
differential equations and partial differential equations) is classical, and can be traced back
to the work by L. C. Young [61], Filippov [12], Warga [60], Gamkrelidze [15] and Rubio
[54] amongst many others. For more details and a historical survey, see e.g. [11, Part
III]. Parametrized measures arising in the disintegration (5.3) of the occupation measures
are called Young measures in the PDE literature, see e.g. [42] or [52]. Our contribution
is to notice that hierarchies of LMI relaxations can be used to solve numerically the
infinite-dimensional LP on measures arising from relaxed optimal control problems with
polynomial data, following the methodology described originally in [29]. By the Filippov-
Ważewski relaxation theorem [2], the trajectories of the optimal control problem (5.1)
are dense (w.r.t. the metric of uniform convergence of absolutely continuous functions
of time) in the set of trajectories of the relaxed optimal control problem (5.5). This
justifies Assumption 5.1. Finally, our motivating Bolza problem of Sections 1.3 and 5.5 is
a classical example of calculus of variations illustrating that an optimal control problem
with smooth data (infinitely differentiable Lagrangian and dynamics, no state or input
constraints) can have a highly oscillatory optimal solution, see e.g. [10, Example 4.8].
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[28] J. B. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11(3):796–817, 2001.

58



[29] J. B. Lasserre, D. Henrion, C. Prieur, E. Trélat. Nonlinear optimal control via
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