
Multiobjective Mixed Integer
Nonlinear Programming (MOMINLP):

decision and criterion space search algorithms

Marianna De Santis

ESR days - 4 March 2021

1

Outline of the lecture

• Introduction to MOMINLP
• formulation of the problem
• basic definitions
• solution approaches

• FPA: a criterion space search algorithm for bi-objective integer
nonlinear programming problems

• MOMIX: a decision space search algorithm for multi-objective
mixed integer convex programming problems

2

Outline of the lecture

• Introduction to MOMINLP
• formulation of the problem
• basic definitions
• solution approaches

• FPA: a criterion space search algorithm for bi-objective integer
nonlinear programming problems

• MOMIX: a decision space search algorithm for multi-objective
mixed integer convex programming problems

2

Outline of the lecture

• Introduction to MOMINLP
• formulation of the problem
• basic definitions
• solution approaches

• FPA: a criterion space search algorithm for bi-objective integer
nonlinear programming problems

• MOMIX: a decision space search algorithm for multi-objective
mixed integer convex programming problems

2

Problem Formulation

Multiobjective Mixed Integer Nonlinear programming problems
(MOMINLPs) can be formulated as follows:

min (f1(x), . . . , fm(x))T

s.t. gk(x) ≤ 0 k = 1, . . . , p

xi ∈ Z ∀i ∈ I ,

(MOMINLP)

where

• fj , gk : Rn → R; j = 1, . . . ,m; k = 1, . . . , p

• the index set I ⊆ {1, . . . , n} specifies which variables have to
take integer values

3

Problem Formulation

Multiobjective Mixed Integer Nonlinear programming problems
(MOMINLPs) can be formulated as follows:

min (f1(x), . . . , fm(x))T

s.t. gk(x) ≤ 0 k = 1, . . . , p

xi ∈ Z ∀i ∈ I ,

(MOMINLP)

where

• fj , gk : Rn → R; j = 1, . . . ,m; k = 1, . . . , p

• the index set I ⊆ {1, . . . , n} specifies which variables have to
take integer values

3

Motivation

Multiobjective mixed integer optimization problems arise in many
application fields such as

• engineering

• finance

• design of water distribution networks

• location or production planning

• emergency management

see e.g. [Pecci et al. OPTE (2018)], [Yenisey et al. Omega (2014)],
[Liu et al. C&OR (2014)], [Xinodas et al. JOGO (2010)],
[Ehrgott et al. INFOR (2009)]

4

Basic definitions

• point x∗ ∈ F is efficient for (MOMIC) if there is no x ∈ F
with f (x) ≤ f (x∗) and f (x) 6= f (x∗)

The set of efficient points for (MOMIC) is the efficient set
of (MOMIC)

• point z∗ = f (x∗) ∈ Rm is nondominated for (MOMIC) if
x∗ ∈ F is an efficient point for (MOMIC)

The set of all nondominated points of (MOMIC) is the
nondominated set of (MOMIC)

• Let x∗, x ∈ F with f (x∗) ≤ f (x) and f (x∗) 6= f (x)

Then we say that x∗ dominates x and also that f (x∗)
dominates f (x)

5

Basic definitions

• point x∗ ∈ F is efficient for (MOMIC) if there is no x ∈ F
with f (x) ≤ f (x∗) and f (x) 6= f (x∗)

The set of efficient points for (MOMIC) is the efficient set
of (MOMIC)

• point z∗ = f (x∗) ∈ Rm is nondominated for (MOMIC) if
x∗ ∈ F is an efficient point for (MOMIC)

The set of all nondominated points of (MOMIC) is the
nondominated set of (MOMIC)

• Let x∗, x ∈ F with f (x∗) ≤ f (x) and f (x∗) 6= f (x)

Then we say that x∗ dominates x and also that f (x∗)
dominates f (x)

5

Challenges of multiobjective mixed integer programming
Example: image set of a bi-objective instance

z∗ − R2
+

z∗

F1

F2

F3

F4

z ′ − R2
+

z ′

f1

f2

6

Challenges of multiobjective mixed integer programming
Example: image set of a bi-objective instance

z∗ − R2
+

z∗

F1

F2

F3

F4

z ′ − R2
+

z ′

f1

f2

• the union of all Fj
describes the whole
image set

• z∗ is a nondominated
point and the preimage
of z∗ is an efficient
point

• z ′ is dominated
because z∗ ≤ z ′ and
z∗ 6= z ′.

• all the points z ∈ F3
are dominated

6

Challenges of multiobjective mixed integer programming
Example: image set of a bi-objective instance

z∗ − R2
+

z∗

F1

F2

F3

F4

z ′ − R2
+

z ′

f1

f2

• the union of all Fj
describes the whole
image set

• z∗ is a nondominated
point and the preimage
of z∗ is an efficient
point

• z ′ is dominated
because z∗ ≤ z ′ and
z∗ 6= z ′.

• all the points z ∈ F3
are dominated

6

Challenges of multiobjective mixed integer programming
Example: image set of a bi-objective instance

z∗ − R2
+

z∗

F1

F2

F3

F4

z ′ − R2
+

z ′

f1

f2

• the union of all Fj
describes the whole
image set

• z∗ is a nondominated
point and the preimage
of z∗ is an efficient
point

• z ′ is dominated
because z∗ ≤ z ′ and
z∗ 6= z ′.

• all the points z ∈ F3
are dominated

6

Challenges of multiobjective mixed integer programming
Example: image set of a bi-objective instance

z∗ − R2
+

z∗

F1

F2

F3

F4

z ′ − R2
+

z ′

f1

f2

• the union of all Fj
describes the whole
image set

• z∗ is a nondominated
point and the preimage
of z∗ is an efficient
point

• z ′ is dominated
because z∗ ≤ z ′ and
z∗ 6= z ′.

• all the points z ∈ F3
are dominated

6

Solution approaches

• Criterion space search algorithms:
methods that work in the space of the objective functions

find non-dominated points by addressing a sequence of
single-objective optimization problems

• Decision space search algorithms:
approaches that work in the space of decision variables

extend approaches developed for single-objective MINLPs to
the case of multiple objectives

7

Solution approaches

• Criterion space search algorithms:
methods that work in the space of the objective functions

find non-dominated points by addressing a sequence of
single-objective optimization problems

• Decision space search algorithms:
approaches that work in the space of decision variables

extend approaches developed for single-objective MINLPs to
the case of multiple objectives

7

Solution approaches

• Criterion space search algorithms:
methods that work in the space of the objective functions

find non-dominated points by addressing a sequence of
single-objective optimization problems

• Decision space search algorithms:
approaches that work in the space of decision variables

extend approaches developed for single-objective MINLPs to
the case of multiple objectives

7

Solution approaches

• Criterion space search algorithms:
methods that work in the space of the objective functions

find non-dominated points by addressing a sequence of
single-objective optimization problems

• Decision space search algorithms:
approaches that work in the space of decision variables

extend approaches developed for single-objective MINLPs to
the case of multiple objectives

7

Solution approaches

• Criterion space search algorithms:
methods that work in the space of the objective functions

find non-dominated points by addressing a sequence of
single-objective optimization problems

• Decision space search algorithms:
approaches that work in the space of decision variables

extend approaches developed for single-objective MINLPs to
the case of multiple objectives

7

FPA: a criterion space search algorithm

for bi-objective integer

nonlinear programming problems

M. De Santis, G. Grani, L. Palagi
Branching with hyperplanes in the criterion space: The frontier
partitioner algorithm for bi-objective integer programming.
European Journal of Operational Research, 283(1), 57-69 (2020)

8

Problem Formulation

We address bi-objective integer programming problems

min
x∈X∩Zn

(f1(x), f2(x)) (BOIP)

where

• X ⊆ Rn

• f1, f2 : Rn → R are continuous

9

Example:
[Ehrgott “Multicriteria Optimization” - 2005]

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

min (x1, x2)

s.t. 2x1 + 3x2 ≥ 11

x ∈ [0, 4] ∩ Z2

https://docs.google.com/forms/d/e/1FAIpQLSeRIWv1bq8U_

B1Egt-gMeFuTecNBghSqfvjVyelQacie_vVqg/viewform?usp=

sf_link

10

https://docs.google.com/forms/d/e/1FAIpQLSeRIWv1bq8U_B1Egt-gMeFuTecNBghSqfvjVyelQacie_vVqg/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeRIWv1bq8U_B1Egt-gMeFuTecNBghSqfvjVyelQacie_vVqg/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeRIWv1bq8U_B1Egt-gMeFuTecNBghSqfvjVyelQacie_vVqg/viewform?usp=sf_link

Example: YN = {(0, 4); (1, 3); (3, 2); (4, 1)}
[Ehrgott “Multicriteria Optimization” - 2005]

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

min (x1, x2)

s.t. 2x1 + 3x2 ≥ 11

x ∈ [0, 4] ∩ Z2

11

Criterion space algorithms

Criterion space search algorithms find non-dominated points by
addressing a sequence of single-objective optimization
problems

Once a non-dominated point is computed, the dominated parts
of the criterion space are removed and the algorithms go on
looking for new non-dominated points

12

Criterion space algorithms

Criterion space search algorithms find non-dominated points by
addressing a sequence of single-objective optimization
problems

Once a non-dominated point is computed, the dominated parts
of the criterion space are removed and the algorithms go on
looking for new non-dominated points

12

Criterion space algorithms
solving single-objective optimization problems to get non-dominated points

We refer to the weighted-sum scalarization problem (INLP)
defined as

min
x∈X∩Zn

λ1 f1(x) + λ2 f2(x) (INLP)

where λ1 + λ2 = 1, with λi ≥ 0, for i = 1, 2

Proposition

Let λ1, λ2 > 0, then each solution of Problem (INLP) is an
efficient solution for Problem (BOIP)

The converse is true only under proper convexity assumptions!!

13

Criterion space algorithms
solving single-objective optimization problems to get non-dominated points

We refer to the weighted-sum scalarization problem (INLP)
defined as

min
x∈X∩Zn

λ1 f1(x) + λ2 f2(x) (INLP)

where λ1 + λ2 = 1, with λi ≥ 0, for i = 1, 2

Proposition

Let λ1, λ2 > 0, then each solution of Problem (INLP) is an
efficient solution for Problem (BOIP)

The converse is true only under proper convexity assumptions!!

13

Criterion space algorithms
solving single-objective optimization problems to get non-dominated points

We refer to the weighted-sum scalarization problem (INLP)
defined as

min
x∈X∩Zn

λ1 f1(x) + λ2 f2(x) (INLP)

where λ1 + λ2 = 1, with λi ≥ 0, for i = 1, 2

Proposition

Let λ1, λ2 > 0, then each solution of Problem (INLP) is an
efficient solution for Problem (BOIP)

The converse is true only under proper convexity assumptions!!

13

Criterion space algorithms
solving single-objective optimization problems to get non-dominated points

We refer to the weighted-sum scalarization problem (INLP)
defined as

min
x∈X∩Zn

λ1 f1(x) + λ2 f2(x) (INLP)

where λ1 + λ2 = 1, with λi ≥ 0, for i = 1, 2

Proposition

Let λ1, λ2 > 0, then each solution of Problem (INLP) is an
efficient solution for Problem (BOIP)

The converse is true only under proper convexity assumptions!!

13

Example: YN = {(0, 4); (1, 3); (3, 2); (4, 1)}
[Ehrgott “Multicriteria Optimization” - 2005]

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

Point (3, 2)> cannot be found by weighted-sum scalarization!!

14

The Frontier Partitioner Algorithm FPA
Key ingredients

FPA is a Criterion Space search Algorithm

At each iteration FPA:

• computes one non-dominated solution (when it exists)
addressing a weighted-sum scalarization problem

• in case a non-dominated solution is found, two subproblems
are constructed using properly defined inequalities

15

The Frontier Partitioner Algorithm FPA
Key ingredients

FPA is a Criterion Space search Algorithm

At each iteration FPA:

• computes one non-dominated solution (when it exists)
addressing a weighted-sum scalarization problem

• in case a non-dominated solution is found, two subproblems
are constructed using properly defined inequalities

15

The Frontier Partitioner Algorithm FPA
Key ingredients

FPA is a Criterion Space search Algorithm

At each iteration FPA:

• computes one non-dominated solution (when it exists)
addressing a weighted-sum scalarization problem

• in case a non-dominated solution is found, two subproblems
are constructed using properly defined inequalities

15

The Frontier Partitioner Algorithm FPA
Positive gap assumption

Definition

Let f : Rn → R. We say that f is a positive γ-function if γ ∈ R+

exists such that |f (x)− f (z)| ≥ γ, for all x , z ∈ X ∩ Zn with
f (x) 6= f (z).

Assumption (Positive gap value)

The functions fi : Rn → R in (BOIP) are positive γ-functions

16

The Frontier Partitioner Algorithm FPA
Positive gap assumption

Definition

Let f : Rn → R. We say that f is a positive γ-function if γ ∈ R+

exists such that |f (x)− f (z)| ≥ γ, for all x , z ∈ X ∩ Zn with
f (x) 6= f (z).

Assumption (Positive gap value)

The functions fi : Rn → R in (BOIP) are positive γ-functions

16

The Frontier Partitioner Algorithm FPA
Definition of the inequalities

Let ŷk be a non-dominated point for (BOIP) found at iteration k

Let εi ∈ (0, γi], i = 1, 2.

We consider the inequalities

fi (x) ≤ ŷki − εi , i = 1, 2

Remark

The inequalities fi (x) ≤ ŷki − εi , i = 1, 2
cut the non-dominated solution ŷk

and they are linear in the criterion space

17

The Frontier Partitioner Algorithm FPA
Definition of the inequalities

Let ŷk be a non-dominated point for (BOIP) found at iteration k

Let εi ∈ (0, γi], i = 1, 2.

We consider the inequalities

fi (x) ≤ ŷki − εi , i = 1, 2

Remark

The inequalities fi (x) ≤ ŷki − εi , i = 1, 2
cut the non-dominated solution ŷk

and they are linear in the criterion space

17

The Frontier Partitioner Algorithm FPA
Definition of the inequalities

Let ŷk be a non-dominated point for (BOIP) found at iteration k

Let εi ∈ (0, γi], i = 1, 2.

We consider the inequalities

fi (x) ≤ ŷki − εi , i = 1, 2

Remark

The inequalities fi (x) ≤ ŷki − εi , i = 1, 2
cut the non-dominated solution ŷk

and they are linear in the criterion space

17

The Frontier Partitioner Algorithm FPA
Definition of the inequalities

Let ŷk be a non-dominated point for (BOIP) found at iteration k

Let εi ∈ (0, γi], i = 1, 2.

We consider the inequalities

fi (x) ≤ ŷki − εi , i = 1, 2

Remark

The inequalities fi (x) ≤ ŷki − εi , i = 1, 2
cut the non-dominated solution ŷk

and they are linear in the criterion space

17

The Frontier Partitioner Algorithm FPA
Definition of the inequalities

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

18

The Frontier Partitioner Algorithm FPA
Definition of the subproblems

Let ŷ0 be a non-dominated point for (BOIP)
found at the first iteration of FPA

Starting from ŷ0, FPA defines the following two BOIPs:

min
x∈X1∩Zn

(f1(x), f2(x)) X1 = X ∩ {x ∈ Rn : f1(x) ≤ ŷ01 − ε1}

min
x∈X2∩Zn

(f1(x), f2(x)) X2 = X ∩ {x ∈ Rn : f2(x) ≤ ŷ02 − ε2}

...and goes on producing iteratively a finite lists of BOIPs!

19

The Frontier Partitioner Algorithm FPA
Definition of the subproblems

Let ŷ0 be a non-dominated point for (BOIP)
found at the first iteration of FPA

Starting from ŷ0, FPA defines the following two BOIPs:

min
x∈X1∩Zn

(f1(x), f2(x)) X1 = X ∩ {x ∈ Rn : f1(x) ≤ ŷ01 − ε1}

min
x∈X2∩Zn

(f1(x), f2(x)) X2 = X ∩ {x ∈ Rn : f2(x) ≤ ŷ02 − ε2}

...and goes on producing iteratively a finite lists of BOIPs!

19

The Frontier Partitioner Algorithm FPA
Definition of the subproblems

Let ŷ0 be a non-dominated point for (BOIP)
found at the first iteration of FPA

Starting from ŷ0, FPA defines the following two BOIPs:

min
x∈X1∩Zn

(f1(x), f2(x)) X1 = X ∩ {x ∈ Rn : f1(x) ≤ ŷ01 − ε1}

min
x∈X2∩Zn

(f1(x), f2(x)) X2 = X ∩ {x ∈ Rn : f2(x) ≤ ŷ02 − ε2}

...and goes on producing iteratively a finite lists of BOIPs!

19

The Frontier Partitioner Algorithm FPA
Convergence analysis

Proposition

At every iteration FPA either states that the BOIP considered is
infeasible or finds a yet unknown non-dominated solution.

Theorem

The Frontier Partitioner Algorithm returns the complete Pareto
frontier YN of (BOIP) after having addressed 2|YN |+ 1
single-objective integer programs.

20

The Frontier Partitioner Algorithm FPA
Convergence analysis

Proposition

At every iteration FPA either states that the BOIP considered is
infeasible or finds a yet unknown non-dominated solution.

Theorem

The Frontier Partitioner Algorithm returns the complete Pareto
frontier YN of (BOIP) after having addressed 2|YN |+ 1
single-objective integer programs.

20

Improving the complexity of FPA
Use smart weights

In order to identify all |YN | non-dominated points of a BOIP by
solving a sequence of subproblems, any criterion space algorithm
for BOIPs must solve at least |YN | subproblems

⇓
The complexity of any criterion space algorithm is O(|YN |)

Remark

We can drop down the complexity of FPA
from 2|YN |+ 1 to |YN |+ 1 using smart weights!

21

Improving the complexity of FPA
Use smart weights

In order to identify all |YN | non-dominated points of a BOIP by
solving a sequence of subproblems, any criterion space algorithm
for BOIPs must solve at least |YN | subproblems

⇓
The complexity of any criterion space algorithm is O(|YN |)

Remark

We can drop down the complexity of FPA
from 2|YN |+ 1 to |YN |+ 1 using smart weights!

21

Improving the complexity of FPA
Use smart weights

In order to identify all |YN | non-dominated points of a BOIP by
solving a sequence of subproblems, any criterion space algorithm
for BOIPs must solve at least |YN | subproblems

⇓
The complexity of any criterion space algorithm is O(|YN |)

Remark

We can drop down the complexity of FPA
from 2|YN |+ 1 to |YN |+ 1 using smart weights!

21

FPA applied to the example
smart weights

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

22

FPA applied to the example
smart weights

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1
-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

22

FPA applied to the example
smart weights

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

23

FPA applied to the example
smart weights

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1
-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

23

FPA applied to the example
smart weights

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

24

FPA applied to the example
smart weights

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1
-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

2x1 + 3x2 ≥ 11

x2 ≤ 4

x1 ≤ 4x2

x1

24

Which BOIPs can be addressed by FPA?

fi (x) = γ INLP oracle

cᵀx with c ∈ Zn 1 ILP

cᵀx with c ∈ Qn 1
r ILP

xᵀQx + cᵀx with Q � 0, Q ∈ Zn×n, c ∈ Zn 1 QCQIP

xᵀQx + cᵀx with Q � 0, Q ∈ Qn×n, c ∈ Qn 1
r QCQIP

: Zn → Z, convex 1 CIP

Table: Classes of functions that satisfy the positive gap value assumption.

25

Which BOIPs can be addressed by FPA?

fi (x) = γ INLP oracle

cᵀx with c ∈ Zn 1 ILP

cᵀx with c ∈ Qn 1
r ILP

xᵀQx + cᵀx with Q � 0, Q ∈ Zn×n, c ∈ Zn 1 QCQIP

xᵀQx + cᵀx with Q � 0, Q ∈ Qn×n, c ∈ Qn 1
r QCQIP

: Zn → Z, convex 1 CIP

Table: Classes of functions that satisfy the positive gap value assumption.

25

Numerical results

Algorithm FPA

• is implemented in Java

• uses CPLEX 12.7.1 to address the scalarized problem (INLP)

We took instances available at
http://home.ku.edu.tr/~moolibrary/

We tested FPA on

• biobjective integer linear instances
we compare FPA with the Balanced Box Method
[Boland et al. (2015) INFORMS Journal on Computing,
27(4), 735-754]

• biobjective integer convex quadratic instances

26

http://home.ku.edu.tr/~moolibrary/

Numerical results

Algorithm FPA

• is implemented in Java

• uses CPLEX 12.7.1 to address the scalarized problem (INLP)

We took instances available at
http://home.ku.edu.tr/~moolibrary/

We tested FPA on

• biobjective integer linear instances
we compare FPA with the Balanced Box Method
[Boland et al. (2015) INFORMS Journal on Computing,
27(4), 735-754]

• biobjective integer convex quadratic instances

26

http://home.ku.edu.tr/~moolibrary/

Numerical results

Algorithm FPA

• is implemented in Java

• uses CPLEX 12.7.1 to address the scalarized problem (INLP)

We took instances available at
http://home.ku.edu.tr/~moolibrary/

We tested FPA on

• biobjective integer linear instances
we compare FPA with the Balanced Box Method
[Boland et al. (2015) INFORMS Journal on Computing,
27(4), 735-754]

• biobjective integer convex quadratic instances

26

http://home.ku.edu.tr/~moolibrary/

Numerical results

Algorithm FPA

• is implemented in Java

• uses CPLEX 12.7.1 to address the scalarized problem (INLP)

We took instances available at
http://home.ku.edu.tr/~moolibrary/

We tested FPA on

• biobjective integer linear instances
we compare FPA with the Balanced Box Method
[Boland et al. (2015) INFORMS Journal on Computing,
27(4), 735-754]

• biobjective integer convex quadratic instances

26

http://home.ku.edu.tr/~moolibrary/

Comparison via performance profiles
[Dolan, E. and Moré, J. (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming, 91, 201–213.]

Given

• a set of solvers S
• a set of problems P

We define the performance ratio

rp,s = tp,s/min{tp,s′ : s ′ ∈ S},

where tp,s is the computational time

The performance profile for s ∈ S is the plot of the cumulative
distribution function ρs :

ρs(τ) = |{p ∈ P : rp,s ≤ τ}|/|P|

27

Comparison via performance profiles
[Dolan, E. and Moré, J. (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming, 91, 201–213.]

Given

• a set of solvers S
• a set of problems P

We define the performance ratio

rp,s = tp,s/min{tp,s′ : s ′ ∈ S},

where tp,s is the computational time

The performance profile for s ∈ S is the plot of the cumulative
distribution function ρs :

ρs(τ) = |{p ∈ P : rp,s ≤ τ}|/|P|

27

Comparison via performance profiles
[Dolan, E. and Moré, J. (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming, 91, 201–213.]

Given

• a set of solvers S
• a set of problems P

We define the performance ratio

rp,s = tp,s/min{tp,s′ : s ′ ∈ S},

where tp,s is the computational time

The performance profile for s ∈ S is the plot of the cumulative
distribution function ρs :

ρs(τ) = |{p ∈ P : rp,s ≤ τ}|/|P|

27

Results on biobjective integer linear instances
Performance profiles related to the CPU time

1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

BBM

FPA-W(0.5,0.5)

FPA-W(0.1,0.9)

FPA-W(0.25,0.75)

FPA*
FPA2

28

Results on biobjective integer quadratic instances
Performance profiles related to the CPU time

1 2 3 4

0

0.2

0.4

0.6

0.8

1

100.8 101 101.2 101.4 101.6

0.9

0.95

1

FPA-W(0.5,0.5)

FPA-W(0.1,0.9)

FPA-W(0.25,0.75)
FPA2

29

FPA summary

FPA is a criterion space algorithm for biobjective integer
programming problems that

• Can handle several classes of biobjective integer nonlinear
programming problems

• It is based on the use of properly defined inequalities

• Has the complexity of |YN |+ 1

• On biobjective integer linear programming problems
outperforms existing state-of-the art methods

30

FPA summary

FPA is a criterion space algorithm for biobjective integer
programming problems that

• Can handle several classes of biobjective integer nonlinear
programming problems

• It is based on the use of properly defined inequalities

• Has the complexity of |YN |+ 1

• On biobjective integer linear programming problems
outperforms existing state-of-the art methods

30

FPA summary

FPA is a criterion space algorithm for biobjective integer
programming problems that

• Can handle several classes of biobjective integer nonlinear
programming problems

• It is based on the use of properly defined inequalities

• Has the complexity of |YN |+ 1

• On biobjective integer linear programming problems
outperforms existing state-of-the art methods

30

FPA summary

FPA is a criterion space algorithm for biobjective integer
programming problems that

• Can handle several classes of biobjective integer nonlinear
programming problems

• It is based on the use of properly defined inequalities

• Has the complexity of |YN |+ 1

• On biobjective integer linear programming problems
outperforms existing state-of-the art methods

30

FPA summary

FPA is a criterion space algorithm for biobjective integer
programming problems that

• Can handle several classes of biobjective integer nonlinear
programming problems

• It is based on the use of properly defined inequalities

• Has the complexity of |YN |+ 1

• On biobjective integer linear programming problems
outperforms existing state-of-the art methods

30

MOMIX: a decision space search method
for multi-objective mixed integer

convex programming problems

M. De Santis, G. Eichfelder, J. Niebling, S. Rocktäschel
Solving multiobjective mixed integer convex optimization problems,
SIAM Journal on Optimization 30 (4), 3122-3145 (2020)

31

MOMIX: a decision space search method for (MOMIC)

MOMIX adresses Multiobjective Mixed Integer Nonlinear
programming problems of the following form:

min (f1(x), . . . , fm(x))T

s.t. gk(x) ≤ 0 k = 1, . . . , p

x ∈ B := [l , u]

xi ∈ Z ∀i ∈ I ,

(MOMIC)

where

• fj , gk : B → R; j = 1, . . . ,m; k = 1, . . . , p convex and
differentiable

• l , u ∈ Rn are lower and upper bounds on the decision variables

• the index set I ⊆ {1, . . . , n} specifies which variables have to
take integer values

32

MOMIX: a decision space search method for (MOMIC)

MOMIX adresses Multiobjective Mixed Integer Nonlinear
programming problems of the following form:

min (f1(x), . . . , fm(x))T

s.t. gk(x) ≤ 0 k = 1, . . . , p

x ∈ B := [l , u]

xi ∈ Z ∀i ∈ I ,

(MOMIC)

where

• fj , gk : B → R; j = 1, . . . ,m; k = 1, . . . , p convex and
differentiable

• l , u ∈ Rn are lower and upper bounds on the decision variables

• the index set I ⊆ {1, . . . , n} specifies which variables have to
take integer values

32

MOMIX: a decision space search method for (MOMIC)
main ingredients

MOMIX is a branch-and-bound method based on partitioning the
feasible set of (MOMIC)

• Branching rule: based on bisections of the box B

• Upper bound computation: evaluation of the objective
functions on feasible points

• Lower bound computation: linear outer approximation of
the image set

33

MOMIX: a decision space search method for (MOMIC)
main ingredients

MOMIX is a branch-and-bound method based on partitioning the
feasible set of (MOMIC)

• Branching rule: based on bisections of the box B

• Upper bound computation: evaluation of the objective
functions on feasible points

• Lower bound computation: linear outer approximation of
the image set

33

MOMIX: a decision space search method for (MOMIC)
main ingredients

MOMIX is a branch-and-bound method based on partitioning the
feasible set of (MOMIC)

• Branching rule: based on bisections of the box B

• Upper bound computation: evaluation of the objective
functions on feasible points

• Lower bound computation: linear outer approximation of
the image set

33

MOMIX: a decision space search method for (MOMIC)
main ingredients

MOMIX is a branch-and-bound method based on partitioning the
feasible set of (MOMIC)

• Branching rule: based on bisections of the box B

• Upper bound computation: evaluation of the objective
functions on feasible points

• Lower bound computation: linear outer approximation of
the image set

33

Some notation

By Bg , BZ and Bg ,Z we denote the following sets related to the
constraints in (MOMIC):

Bg := {x ∈ B | g(x) ≤ 0}

BZ := {x ∈ B | xi ∈ Z for all i ∈ I}

Bg ,Z := Bg ∩ BZ

Using these sets, we can write (MOMIC) in short form as

min f (x)

s.t. x ∈ Bg ,Z

34

Some notation

By Bg , BZ and Bg ,Z we denote the following sets related to the
constraints in (MOMIC):

Bg := {x ∈ B | g(x) ≤ 0}

BZ := {x ∈ B | xi ∈ Z for all i ∈ I}

Bg ,Z := Bg ∩ BZ

Using these sets, we can write (MOMIC) in short form as

min f (x)

s.t. x ∈ Bg ,Z

34

Upper Bounds and Local Upper Bounds

Two lists of points are kept updated and used for pruning:

• LPNS ⊆ f (Bg ,Z): potentially nondominated solutions

• LLUB ⊆ Rm: local upper bounds
[Klamroth et al., On the representation of the search region in
multi-objective optimization., EJOR (2015)]

Theorem

Consider a subbox B̃ ⊆ B
Let LLUB be the local upper bound set w.r.t. LPNS

If p /∈ f (B̃g ,Z) + Rm
+ holds for all p ∈ LLUB

B̃ does not contain any efficient point for (MOMIC)

35

Upper Bounds and Local Upper Bounds

Two lists of points are kept updated and used for pruning:

• LPNS ⊆ f (Bg ,Z): potentially nondominated solutions

• LLUB ⊆ Rm: local upper bounds
[Klamroth et al., On the representation of the search region in
multi-objective optimization., EJOR (2015)]

Theorem

Consider a subbox B̃ ⊆ B
Let LLUB be the local upper bound set w.r.t. LPNS

If p /∈ f (B̃g ,Z) + Rm
+ holds for all p ∈ LLUB

B̃ does not contain any efficient point for (MOMIC)

35

Upper Bounds and Local Upper Bounds

Two lists of points are kept updated and used for pruning:

• LPNS ⊆ f (Bg ,Z): potentially nondominated solutions

• LLUB ⊆ Rm: local upper bounds
[Klamroth et al., On the representation of the search region in
multi-objective optimization., EJOR (2015)]

Theorem

Consider a subbox B̃ ⊆ B

Let LLUB be the local upper bound set w.r.t. LPNS

If p /∈ f (B̃g ,Z) + Rm
+ holds for all p ∈ LLUB

B̃ does not contain any efficient point for (MOMIC)

35

Upper Bounds and Local Upper Bounds

Two lists of points are kept updated and used for pruning:

• LPNS ⊆ f (Bg ,Z): potentially nondominated solutions

• LLUB ⊆ Rm: local upper bounds
[Klamroth et al., On the representation of the search region in
multi-objective optimization., EJOR (2015)]

Theorem

Consider a subbox B̃ ⊆ B
Let LLUB be the local upper bound set w.r.t. LPNS

If p /∈ f (B̃g ,Z) + Rm
+ holds for all p ∈ LLUB

B̃ does not contain any efficient point for (MOMIC)

35

Upper Bounds and Local Upper Bounds

Two lists of points are kept updated and used for pruning:

• LPNS ⊆ f (Bg ,Z): potentially nondominated solutions

• LLUB ⊆ Rm: local upper bounds
[Klamroth et al., On the representation of the search region in
multi-objective optimization., EJOR (2015)]

Theorem

Consider a subbox B̃ ⊆ B
Let LLUB be the local upper bound set w.r.t. LPNS

If p /∈ f (B̃g ,Z) + Rm
+ holds for all p ∈ LLUB

B̃ does not contain any efficient point for (MOMIC)

35

Pruning of the node
example on a bi-objective purely integer instance

f1

f2

LPNS

LLUB

f (B̃g ,Z)

36

Lower bounds
image set of a bi-objective purely integer instance

f (B̃g ,Z)

f1

f2

At every node of the
branch-and-bound tree a
subbox B̃ ⊆ B is
selected

37

Lower bounds
image set of a bi-objective purely integer instance

f (B̃g ,Z)

f1

f2

At every node of the
branch-and-bound tree a
subbox B̃ ⊆ B is
selected

a lower bound is any set
LB̃ ⊆ Rm such that

f (B̃g ,Z) ⊆ LB̃ + Rm
+

37

Lower bounds
convex hull of the image set

conv(f (B̃g ,Z))

f1

f2

In particular conv(f (B̃g ,Z))
is a lower bound

38

Lower bounds
convex hull of the image set

conv(f (B̃g ,Z))

f1

f2

In particular conv(f (B̃g ,Z))
is a lower bound

we look for sets LB̃ :

conv(f (B̃g ,Z)) ⊆ LB̃ + Rm
+

38

Lower bounds computation

At every node a subbox B̃ ⊆ B is selected

and a linear outer approximation LB̃ of conv(f (B̃g ,Z)) is built:

f (B̃g ,Z) ⊆ conv(f (B̃g ,Z)) ⊆ LB̃ + Rm
+

⇓
if p /∈ LB̃ + Rm

+ holds for all p ∈ LLUB

the node can be pruned (or the box B̃ can be discarded) as

B̃ does not contain any efficient point for (MOMIC)

39

Lower bounds computation

At every node a subbox B̃ ⊆ B is selected

and a linear outer approximation LB̃ of conv(f (B̃g ,Z)) is built:

f (B̃g ,Z) ⊆ conv(f (B̃g ,Z)) ⊆ LB̃ + Rm
+

⇓
if p /∈ LB̃ + Rm

+ holds for all p ∈ LLUB

the node can be pruned (or the box B̃ can be discarded) as

B̃ does not contain any efficient point for (MOMIC)

39

Lower bounds computation

At every node a subbox B̃ ⊆ B is selected

and a linear outer approximation LB̃ of conv(f (B̃g ,Z)) is built:

f (B̃g ,Z) ⊆ conv(f (B̃g ,Z)) ⊆ LB̃ + Rm
+

⇓
if p /∈ LB̃ + Rm

+ holds for all p ∈ LLUB

the node can be pruned (or the box B̃ can be discarded) as

B̃ does not contain any efficient point for (MOMIC)

39

Lower bounds computation

At every node a subbox B̃ ⊆ B is selected

and a linear outer approximation LB̃ of conv(f (B̃g ,Z)) is built:

f (B̃g ,Z) ⊆ conv(f (B̃g ,Z)) ⊆ LB̃ + Rm
+

⇓
if p /∈ LB̃ + Rm

+ holds for all p ∈ LLUB

the node can be pruned (or the box B̃ can be discarded) as

B̃ does not contain any efficient point for (MOMIC)

39

Lower bounding procedure: Step 1
computation of the ideal point

f id

f (B̃g)

f1

f2

As a first step, we
compute the ideal point
f id ∈ Rm of f (B̃g)

40

Lower bounding procedure: Step 1
computation of the ideal point

f id

f (B̃g)

f1

f2

As a first step, we
compute the ideal point
f id ∈ Rm of f (B̃g)

f idj := minx∈B̃g fj(x)

j = 1, . . . ,m

40

Lower bounding procedure: Step 2
computation of supporting hyperplanes for f (B̃g)

p

f id

f (B̃g)

f1

f2 Let p ∈ LLUB
if p ∈ LB̃ + Rm

+ we try
to improve LB̃ by
computing a further
hyperplane

41

Lower bounding procedure: Step 2
computation of supporting hyperplanes for f (B̃g)

p

f id

H λ̂,ŷ(p)

f (B̃g)

f1

f2 Let p ∈ LLUB
if p ∈ LB̃ + Rm

+ we try
to improve LB̃ by
computing a further
hyperplane

min t

s.t. f (x) ≤ p + te

x ∈ B̃g

t ∈ R

42

Computation of supporting hyperplanes for f (B̃g)
address a single-objective continuous convex problem

Let (x̂ , t̂) ∈ B̃g × R be a minimal solution of the problem

min t

s.t. f (x) ≤ p + te

x ∈ B̃g

t ∈ R

Then a supporting hyperplane of f (B̃g) is given by

H λ̂,ŷ(p) := {y ∈ Rm | λ̂T y = λ̂T ŷ(p)}

with

• λ̂ ∈ Rm
+ a Lagrange multiplier for f (x̂) ≤ p + t̂e

• ŷ(p) := p + t̂e

see e.g. [Löhne et al., J. Global Optim. (2014)]

43

Computation of supporting hyperplanes for f (B̃g)
address a single-objective continuous convex problem

Let (x̂ , t̂) ∈ B̃g × R be a minimal solution of the problem

min t

s.t. f (x) ≤ p + te

x ∈ B̃g

t ∈ R

Then a supporting hyperplane of f (B̃g) is given by

H λ̂,ŷ(p) := {y ∈ Rm | λ̂T y = λ̂T ŷ(p)}

with

• λ̂ ∈ Rm
+ a Lagrange multiplier for f (x̂) ≤ p + t̂e

• ŷ(p) := p + t̂e

see e.g. [Löhne et al., J. Global Optim. (2014)]

43

Computation of supporting hyperplanes for f (B̃g)
Implications

There exist two possibilities:

(i) t̂ > 0

=⇒ p /∈ LB̃ + Rm
+

we improve the lower bound adding by H λ̂,ŷ(p)

and consider the next local upper bound

(ii) t̂ ≤ 0 =⇒ p ∈ LB̃ + Rm
+

we cannot prune the node

we refine the outer approximation of conv(f (B̃g ,Z))

44

Computation of supporting hyperplanes for f (B̃g)
Implications

There exist two possibilities:

(i) t̂ > 0 =⇒ p /∈ LB̃ + Rm
+

we improve the lower bound adding by H λ̂,ŷ(p)

and consider the next local upper bound

(ii) t̂ ≤ 0 =⇒ p ∈ LB̃ + Rm
+

we cannot prune the node

we refine the outer approximation of conv(f (B̃g ,Z))

44

Computation of supporting hyperplanes for f (B̃g)
Implications

There exist two possibilities:

(i) t̂ > 0 =⇒ p /∈ LB̃ + Rm
+

we improve the lower bound adding by H λ̂,ŷ(p)

and consider the next local upper bound

(ii) t̂ ≤ 0

=⇒ p ∈ LB̃ + Rm
+

we cannot prune the node

we refine the outer approximation of conv(f (B̃g ,Z))

44

Computation of supporting hyperplanes for f (B̃g)
Implications

There exist two possibilities:

(i) t̂ > 0 =⇒ p /∈ LB̃ + Rm
+

we improve the lower bound adding by H λ̂,ŷ(p)

and consider the next local upper bound

(ii) t̂ ≤ 0 =⇒ p ∈ LB̃ + Rm
+

we cannot prune the node

we refine the outer approximation of conv(f (B̃g ,Z))

44

Lower bounding procedure: Step 3
computation of supporting hyperplanes for conv(f (B̃g,Z))

p

f id

f (x̂)

H λ̂,ŷ(p)

H λ̂,f (x̂)

f (B̃g)

conv(f (B̃g ,Z))

f1

f2

if t̂ ≤ 0

we address a
single-objective
mixed integer convex
programming problem

45

Lower bounding procedure: Step 3
computation of supporting hyperplanes for conv(f (B̃g,Z))

p

f id

f (x̂)

H λ̂,ŷ(p)

H λ̂,f (x̂)

f (B̃g)

conv(f (B̃g ,Z))

f1

f2

if t̂ ≤ 0

we address a
single-objective
mixed integer convex
programming problem

min λ̂T f (x)

s.t. x ∈ B̃g ,Z

45

Computation of supporting hyperplanes for conv(f (B̃g ,Z))
address a single-objective mixed integer convex problem

Let x̂ ∈ B̃g ,Z be a minimal solution of

min λ̂T f (x)

s.t. x ∈ B̃g ,Z

• A supporting hyperplane of conv(f (B̃g ,Z)) is given by

H λ̂,f (x̂) := {y ∈ Rm | λ̂T y = λ̂T f (x̂)}

• f (x̂) is an upper bound for (MOMIC)

46

Computation of supporting hyperplanes for conv(f (B̃g ,Z))
address a single-objective mixed integer convex problem

Let x̂ ∈ B̃g ,Z be a minimal solution of

min λ̂T f (x)

s.t. x ∈ B̃g ,Z

• A supporting hyperplane of conv(f (B̃g ,Z)) is given by

H λ̂,f (x̂) := {y ∈ Rm | λ̂T y = λ̂T f (x̂)}

• f (x̂) is an upper bound for (MOMIC)

46

Computation of supporting hyperplanes for conv(f (B̃g ,Z))
address a single-objective mixed integer convex problem

Let x̂ ∈ B̃g ,Z be a minimal solution of

min λ̂T f (x)

s.t. x ∈ B̃g ,Z

• A supporting hyperplane of conv(f (B̃g ,Z)) is given by

H λ̂,f (x̂) := {y ∈ Rm | λ̂T y = λ̂T f (x̂)}

• f (x̂) is an upper bound for (MOMIC)

46

Computation of supporting hyperplanes for conv(f (B̃g ,Z))
Implications

Again two situations occur:

(i) λ̂Tp < λ̂T f (x̂)

we improve the outer approximation by H λ̂,f (x̂)

and consider the next local upper bound

(ii) λ̂Tp ≥ λ̂T f (x̂)

the local upper bound p lies above

the hyperplane H λ̂,f (x̂)

and we branch the current node by bisecting B̃

47

Computation of supporting hyperplanes for conv(f (B̃g ,Z))
Implications

Again two situations occur:

(i) λ̂Tp < λ̂T f (x̂)

we improve the outer approximation by H λ̂,f (x̂)

and consider the next local upper bound

(ii) λ̂Tp ≥ λ̂T f (x̂)

the local upper bound p lies above

the hyperplane H λ̂,f (x̂)

and we branch the current node by bisecting B̃

47

Computation of supporting hyperplanes for conv(f (B̃g ,Z))
Implications

Again two situations occur:

(i) λ̂Tp < λ̂T f (x̂)

we improve the outer approximation by H λ̂,f (x̂)

and consider the next local upper bound

(ii) λ̂Tp ≥ λ̂T f (x̂)

the local upper bound p lies above

the hyperplane H λ̂,f (x̂)

and we branch the current node by bisecting B̃

47

Computation of supporting hyperplanes for conv(f (B̃g ,Z))
Implications

Again two situations occur:

(i) λ̂Tp < λ̂T f (x̂)

we improve the outer approximation by H λ̂,f (x̂)

and consider the next local upper bound

(ii) λ̂Tp ≥ λ̂T f (x̂)

the local upper bound p lies above

the hyperplane H λ̂,f (x̂)

and we branch the current node by bisecting B̃

47

Computation of supporting hyperplanes for conv(f (B̃g ,Z))
Implications

Again two situations occur:

(i) λ̂Tp < λ̂T f (x̂)

we improve the outer approximation by H λ̂,f (x̂)

and consider the next local upper bound

(ii) λ̂Tp ≥ λ̂T f (x̂)

the local upper bound p lies above

the hyperplane H λ̂,f (x̂)

and we branch the current node by bisecting B̃

47

Correctness results
detection of both the efficient and the nondominated set

Input of MOMIX: δ > 0 prescribed precision

Output of MOMIX:

• LS : list of subboxes B̃ ⊆ B with width ω(B̃) < δ

• LPNS : list of upper bounds

48

Correctness results
detection of both the efficient and the nondominated set

Input of MOMIX: δ > 0 prescribed precision

Output of MOMIX:

• LS : list of subboxes B̃ ⊆ B with width ω(B̃) < δ

• LPNS : list of upper bounds

48

Correctness results
detection of both the efficient and the nondominated set

Input of MOMIX: δ > 0 prescribed precision

Output of MOMIX:

• LS : list of subboxes B̃ ⊆ B with width ω(B̃) < δ

• LPNS : list of upper bounds

48

Correctness results
detection of both the efficient and the nondominated set

Theorem

Let E ⊆ Bg ,Z be the efficient set of (MOMIC).
Let LS be the output of MOMIX. Then LS is a cover of E , namely

E ⊆
⋃

B̃∈LS

B̃

Theorem

Let δ > 0 be the input parameter and LPNS , LS be the output
of MOMIX. Let LLUB be the local upper bound set with respect to
LPNS . Then

f (E) ⊆
(⋃

p∈LLUB

({p} − Rm
+)
)⋂(⋃

z∈LPNS

({z − Lδe}+ Rm
+)
)

49

Correctness results
detection of both the efficient and the nondominated set

Theorem

Let E ⊆ Bg ,Z be the efficient set of (MOMIC).
Let LS be the output of MOMIX. Then LS is a cover of E , namely

E ⊆
⋃

B̃∈LS

B̃

Theorem

Let δ > 0 be the input parameter and LPNS , LS be the output
of MOMIX. Let LLUB be the local upper bound set with respect to
LPNS . Then

f (E) ⊆
(⋃

p∈LLUB

({p} − Rm
+)
)⋂(⋃

z∈LPNS

({z − Lδe}+ Rm
+)
)

49

Example - bi-objective instance with Lδ = 0.1
√

2
part of the image set

50

Numerical results

• Comparison between MOMIX and MOMIXlight

on three bi-objective scalable instances with convex quadratic
objective functions and constraints

• MOMIX and MOMIXlight are implemented in MATLAB R2018a

• within MOMIX we adopted the mixed integer quadratic solver
of GUROBI

• Comparison between MOMIX and the ε-constraint method on a
bi-objective scalable instance

• Plot of LPNS obtained for an instance with three objectives

51

Numerical results

• Comparison between MOMIX and MOMIXlight

on three bi-objective scalable instances with convex quadratic
objective functions and constraints

• MOMIX and MOMIXlight are implemented in MATLAB R2018a

• within MOMIX we adopted the mixed integer quadratic solver
of GUROBI

• Comparison between MOMIX and the ε-constraint method on a
bi-objective scalable instance

• Plot of LPNS obtained for an instance with three objectives

51

Numerical results

• Comparison between MOMIX and MOMIXlight

on three bi-objective scalable instances with convex quadratic
objective functions and constraints

• MOMIX and MOMIXlight are implemented in MATLAB R2018a

• within MOMIX we adopted the mixed integer quadratic solver
of GUROBI

• Comparison between MOMIX and the ε-constraint method on a
bi-objective scalable instance

• Plot of LPNS obtained for an instance with three objectives

51

Numerical results

• Comparison between MOMIX and MOMIXlight

on three bi-objective scalable instances with convex quadratic
objective functions and constraints

• MOMIX and MOMIXlight are implemented in MATLAB R2018a

• within MOMIX we adopted the mixed integer quadratic solver
of GUROBI

• Comparison between MOMIX and the ε-constraint method on a
bi-objective scalable instance

• Plot of LPNS obtained for an instance with three objectives

51

Branching strategies

Let B̃ = [l̃ , ũ] be a subbox of B

We consider the following two strategies to identify the branching
variable ı̂ ∈ {1, . . . , n}:

(br1) J1 = argmax{ũi − l̃i | i ∈ I}
If ũi − l̃i = 0 for all i ∈ I , i.e., in case all the integer variables
are fixed, define J1 = argmax{ũi − l̃i | i ∈ {1, . . . , n} \ I}
Choose ı̂ ∈ J1

(br2) J2 = argmax{ũi − l̃i | i ∈ {1, ..., n}}
If J2 ∩ I 6= ∅ holds, choose ı̂ ∈ J2 ∩ I

Otherwise, choose ı̂ ∈ J2

52

Branching strategies

Let B̃ = [l̃ , ũ] be a subbox of B

We consider the following two strategies to identify the branching
variable ı̂ ∈ {1, . . . , n}:

(br1) J1 = argmax{ũi − l̃i | i ∈ I}
If ũi − l̃i = 0 for all i ∈ I , i.e., in case all the integer variables
are fixed, define J1 = argmax{ũi − l̃i | i ∈ {1, . . . , n} \ I}
Choose ı̂ ∈ J1

(br2) J2 = argmax{ũi − l̃i | i ∈ {1, ..., n}}
If J2 ∩ I 6= ∅ holds, choose ı̂ ∈ J2 ∩ I

Otherwise, choose ı̂ ∈ J2

52

Branching strategies

Let B̃ = [l̃ , ũ] be a subbox of B

We consider the following two strategies to identify the branching
variable ı̂ ∈ {1, . . . , n}:

(br1) J1 = argmax{ũi − l̃i | i ∈ I}
If ũi − l̃i = 0 for all i ∈ I , i.e., in case all the integer variables
are fixed, define J1 = argmax{ũi − l̃i | i ∈ {1, . . . , n} \ I}
Choose ı̂ ∈ J1

(br2) J2 = argmax{ũi − l̃i | i ∈ {1, ..., n}}
If J2 ∩ I 6= ∅ holds, choose ı̂ ∈ J2 ∩ I

Otherwise, choose ı̂ ∈ J2

52

Branching strategies

Let B̃ = [l̃ , ũ] be a subbox of B

We consider the following two strategies to identify the branching
variable ı̂ ∈ {1, . . . , n}:

(br1) J1 = argmax{ũi − l̃i | i ∈ I}
If ũi − l̃i = 0 for all i ∈ I , i.e., in case all the integer variables
are fixed, define J1 = argmax{ũi − l̃i | i ∈ {1, . . . , n} \ I}
Choose ı̂ ∈ J1

(br2) J2 = argmax{ũi − l̃i | i ∈ {1, ..., n}}
If J2 ∩ I 6= ∅ holds, choose ı̂ ∈ J2 ∩ I

Otherwise, choose ı̂ ∈ J2

52

Numerical results
Comparison between MOMIX and MOMIXlight

MOMIX MOMIXlight
(br1) (br2) (br1) (br2)

|I | |C | CPU #nod CPU #nod CPU #nod CPU #nod
Test instance T2 - time limit 1800s
1 2 40.1 757 38.7 765 849.9 609 524.5 669
2 2 30.8 537 31.6 575 667.2 555 563.0 641
3 2 31.0 535 30.8 521 1381.2 1127 814.4 917
4 2 34.7 567 65.6 1095 - - 1134.9 1285
5 2 38.5 587 81.5 1259 - - - -

10 2 350.3 2707 - - - - - -
Test instance T3 - time limit 1800s
1 2 15.5 301 14.6 299 1045.4 299 1025.6 299

10 2 36.5 413 27.1 353 - - - -
20 2 - - 46.9 411 - - - -
30 2 - - 80.4 471 - - - -
50 2 - - - - - - - -
Test instance T4 - time limit 3600s
1 2 41.5 749 44.3 771 296.3 747 225.6 801
2 2 226.2 3683 240.5 3761 - - 3090.4 3701
3 2 1354.9 19127 1321.5 18451 - - - -
1 4 2199.5 23935 2246.6 24399 - - - -

53

Numerical results
Comparison with the ε-constraint method on a bi-objective instance

The ε-constraint method minimizes a sequence of
parameter-dependent single-objective optimization problems of the
following form:

min f2(x)
s.t. f1(x) ≤ ε

x ∈ Bg ,Z
(Pε)

The minima of the functions f1 and f2 define the interval where the
parameter ε belongs

54

Comparison with the ε-constraint method
Instance T2 with |I | = 5, n = 7: LPNS vs 52 solutions (�) computed by ε-constraint
method, solving 475 single-objective mixed integer problems

55

Results on a tri-objective instance
The set LPNS from two different perspectives

56

MOMIX summary

• MOMIX is a branch-and-bound method for multiobjective
mixed integer convex problems based on the use of properly
defined lower bounds

• linear outer approximations of the image set are built in an
adaptive way

• correctness guarantee in terms of detecting both the efficient
and the nondominated set of multiobjective mixed integer
convex problems according to a prescribed precision

57

MOMIX summary

• MOMIX is a branch-and-bound method for multiobjective
mixed integer convex problems based on the use of properly
defined lower bounds

• linear outer approximations of the image set are built in an
adaptive way

• correctness guarantee in terms of detecting both the efficient
and the nondominated set of multiobjective mixed integer
convex problems according to a prescribed precision

57

MOMIX summary

• MOMIX is a branch-and-bound method for multiobjective
mixed integer convex problems based on the use of properly
defined lower bounds

• linear outer approximations of the image set are built in an
adaptive way

• correctness guarantee in terms of detecting both the efficient
and the nondominated set of multiobjective mixed integer
convex problems according to a prescribed precision

57

Thanks for your attention!

58

References

• Boland, N., Charkhgard, H. and Savelsbergh, M. (2015). A criterion
space search algorithm for biobjective integer programming: The
balanced box method. INFORMS Journal on Computing, 27(4),
735–754

• Cacchiani, V. and D’Ambrosio, C. (2017). A branch-and-bound
based heuristic algorithm for convex multi-objective MINLPs.
European Journal of Operational Research, 260, 920-933

• Ehrgott, M., Waters, C., Kasimbeyli and R., Ustun, O. (2009).
Multiobjective programming and multiattribute utility functions in
portfolio optimization. INFOR, 47(1), 31-42

• Löhne, A., Rudloff, B., and Ulus, F. (2014), Primal and dual
approximation algorithms for convex vector optimization problems.
Journal of Global Optimization, 60, 713-736.

59

References

• Liu, Q., Zhang, C., Zhu, K. and Rao, Y. (2014). Novel
multi-objective resource allocation and activity scheduling for fourth
party logistics. Computers and Operations Research, 44, 42-51

• Klamroth, K., Lacour R. and Vanderpooten, D. (2015). On the
representation of the search region in multi-objective optimization.
European Journal of Operational Research, 245, 767-778

• Niebling, J. and Eichfelder, G. (2019). A branch-and-bound-based
algorithm for nonconvex multi-objective optimization SIAM Journal
Optimization, 29, 794-821

• Pecci F, Abraham E and Stoianov I (2018). Global optimality
bounds for the placement of control valves in water supply
networks. Optimization and Engineering 67(1):201-223, DOI
10.1007/s10589-016-9888-z

60

References

• Xidonas, P., Mavrotas, G. and Psarras, J. (2010). Equity portfolio
construction and selection using multiobjective mathematical
programming, Journal of Global Optimization, 47, 185-209

• Yenisey, M. M. and Yagmahan, B. (2014). Multi-objective
permutation flow shop scheduling problem: Literature review,
classification and current trends. Omega, 45, 119-135

• Yu, L., and Peng, Y. (2014). Multiple criteria decision making in
emergency management. Computers and Operations Research, 42,
1-124

61

	

