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Outline of the lecture

e Introduction to MOMINLP

o formulation of the problem
e basic definitions
e solution approaches

e FPA: a criterion space search algorithm for bi-objective integer
nonlinear programming problems

e MOMIX: a decision space search algorithm for multi-objective
mixed integer convex programming problems



Problem Formulation

Multiobjective Mixed Integer Nonlinear programming problems

(MOMINLPs) can be formulated as follows:

min  (A(x),..., fm(x))"

st. g(x) <0 k=1,...,p (MOMINLP)
xi €7 Vi€l
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Problem Formulation

Multiobjective Mixed Integer Nonlinear programming problems
(MOMINLPs) can be formulated as follows:

min  (A(x),..., fm(x))"
st. g(x) <0 k=1,...,p (MOMINLP)
xi €7 Vi€l

where
e fgk :R"=R; j=1,....m; k=1,...,p
e the index set | C {1,...,n} specifies which variables have to
take integer values



Motivation

Multiobjective mixed integer optimization problems arise in many
application fields such as

e engineering

finance

design of water distribution networks

location or production planning

e emergency management

see e.g. [Pecci et al. OPTE (2018)], [Yenisey et al. Omega (2014)],
[Liu et al. C&OR (2014)], [Xinodas et al. JOGO (2010)],
[Ehrgott et al. INFOR (2009)]

u]
o)
I
i
it



Basic definitions

e point x* € F is efficient for (MOMIC) if there is no x € F
with f(x) < f(x*) and f(x) # f(x*)
The set of efficient points for (MOMIC) is the efficient set
of (MOMIC)

e point z* = f(x*) € R™ is nondominated for (MOMIC) if
x* € F is an efficient point for (MOMIC)
The set of all nondominated points of (MOMIC) is the
nondominated set of (MOMIC)



Basic definitions

e point x* € F is efficient for (MOMIC) if there is no x € F
with f(x) < f(x*) and f(x) # f(x*)
The set of efficient points for (MOMIC) is the efficient set
of (MOMIC)

e point z* = f(x*) € R™ is nondominated for (MOMIC) if
x* € F is an efficient point for (MOMIC)

The set of all nondominated points of (MOMIC) is the
nondominated set of (MOMIC)

o Let x*, x € F with f(x*) < f(x) and f(x*) # f(x)
Then we say that x* dominates x and also that f(x*)
dominates f(x)
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Challenges of multiobjective mixed integer programming

Example: image set of a bi-objective instance

e the union of all F;
describes the whole
image set

e z* is a nondominated

point and the preimage
of z* is an efficient
point

e 7' is dominated
because z* < Z’ and
¥+ 7.

e all the points z € F3
are dominated
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Solution approaches

o Criterion space search algorithms:
methods that work in the space of the objective functions

find non-dominated points by addressing a sequence of
single-objective optimization problems

¢ Decision space search algorithms:
approaches that work in the space of decision variables
extend approaches developed for single-objective MINLPs to
the case of multiple objectives



FPA: a criterion space search algorithm
for bi-objective integer
nonlinear programming problems

M. De Santis, G. Grani, L. Palagi

Branching with hyperplanes in the criterion space: The frontier
partitioner algorithm for bi-objective integer programming.
European Journal of Operational Research, 283(1), 57-69 (2020)



Problem Formulation

We address bi-objective integer programming problems

_min (f(x), £(x))
where

(BOIP)
o« X CR"

e fi,h:R" — R are continuous



Example:
[Ehrgott “Multicriteria Optimization” - 2005]

X2 x1 <4

5
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min  (x1,x2)
s.t. 2X1 + 3X2 > 11
x € [0,4] N Z?



https://docs.google.com/forms/d/e/1FAIpQLSeRIWv1bq8U_B1Egt-gMeFuTecNBghSqfvjVyelQacie_vVqg/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeRIWv1bq8U_B1Egt-gMeFuTecNBghSqfvjVyelQacie_vVqg/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeRIWv1bq8U_B1Egt-gMeFuTecNBghSqfvjVyelQacie_vVqg/viewform?usp=sf_link

Example: Yy ={(0,4); (1,3); (3,2); (4,1)}

y )
[Ehrgott “Multicriteria Optimization” - 2005]

(le X2)

. 2X1 + 3X2 Z 11
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Criterion space algorithms

Criterion space search algorithms find non-dominated points by
problems

addressing a sequence of single-objective optimization



Criterion space algorithms

Criterion space search algorithms find non-dominated points by
addressing a sequence of single-objective optimization
problems

Once a non-dominated point is computed, the dominated parts
of the criterion space are removed and the algorithms go on
looking for new non-dominated points



Criterion space algorithms

solving single-objective optimization problems to get non-dominated points
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Jnin_ A1 fi(x) + A2 fa(x) (INLP)
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Let A1, A2 > 0, then each solution of Problem (INLP) is an
efficient solution for Problem (BOIP)




Criterion space algorithms

solving single-objective optimization problems to get non-dominated points

We refer to the weighted-sum scalarization problem (INLP)
defined as

Jnin_ A1 fi(x) + A2 fa(x) (INLP)

where A1 + Mo =1, with \; >0, fori=1,2

Proposition

Let A1, A2 > 0, then each solution of Problem (INLP) is an
efficient solution for Problem (BOIP)

The converse is true only under proper convexity assumptions!!



Example: vy ={(0,4); (1,3); (3,2); (4,1)}

[Ehrgott “Multicriteria Optimization” - 2005]

Point (3,2)" cannot be found by weighted-sum scalarization!!
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The Frontier Partitioner Algorithm FPA
Key ingredients

FPA is a Criterion Space search Algorithm
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The Frontier Partitioner Algorithm FPA

Key ingredients

FPA is a Criterion Space search Algorithm
At each iteration FPA:

e computes one non-dominated solution (when it exists)
addressing a weighted-sum scalarization problem

e in case a non-dominated solution is found, two subproblems
are constructed using properly defined inequalities



The Frontier Partitioner Algorithm FPA

Positive gap assumption

Definition

Let f : R” — R. We say that f is a positive vy-function if v € R
exists such that |f(x) — f(z)| > ~, for all x,z € X NZ" with

f(x) # f(2).




The Frontier Partitioner Algorithm FPA

Positive gap assumption

Definition

Let f : R” — R. We say that f is a positive vy-function if v € R
exists such that |f(x) — f(z)| > v, for all x,z € X N Z" with

f(x) # f(2). )

Assumption (Positive gap value)

The functions f; : R” — R in (BOIP) are positive ~y-functions




Definition of the inequalities

The Frontier Partitioner Algorithm FPA

Let y* be a non-dominated point for (BOIP) found at iteration k
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The Frontier Partitioner Algorithm FPA
Definition of the inequalities

Let y* be a non-dominated point for (BOIP) found at iteration k
Let ¢; € (0,], i =1,2.
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The Frontier Partitioner Algorithm FPA

Definition of the inequalities

Let y* be a non-dominated point for (BOIP) found at iteration k
Let ¢; € (0,v], i =1,2.
We consider the inequalities

() <9f—e, i=1,2

The inequalities fi(x) < f/,-k —€, i =1,2
cut the non-dominated solution y*
and they are linear in the criterion space




The Frontier Partitioner Algorithm FPA

Definition of the inequalities

o = = = =z 9ace
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The Frontier Partitioner Algorithm FPA
Definition of the subproblems

Let §° be a non-dominated point for (BOIP)
found at the first iteration of FPA
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The Frontier Partitioner Algorithm FPA
Definition of the subproblems

Let 7° be a non-dominated point for (BOIP)
found at the first iteration of FPA

min_(
xXEXoNZ"

fi(x), 22(x))

Starting from §°, FPA defines the following two BOIPs:
in (A f;
min, (A(x), f2(x))

X =XN{xeR": i(x) <P — e}

XH=XN{xeR": h(x) <P - e}

u]
]
I
i
it
= ;E?
© Ko



The Frontier Partitioner Algorithm FPA

Definition of the subproblems

Let §° be a non-dominated point for (BOIP)
found at the first iteration of FPA

Starting from §°, FPA defines the following two BOIPs:

min_ (f(x),h(x)) Xi=XN{xeR": fi(x) <P —e}

xeX1NZ"
in_ ((x), X=X R” : f(x) < 92 —
Er)?;an( 1(x), £2(x)) 2 N{xe 2(x) < 97 — e}

...and goes on producing iteratively a finite lists of BOIPs!



The Frontier Partitioner Algorithm FPA

Convergence analysis

Proposition

At every iteration FPA either states that the BOIP considered is
infeasible or finds a yet unknown non-dominated solution.




The Frontier Partitioner Algorithm FPA

Convergence analysis

Proposition

At every iteration FPA either states that the BOIP considered is
infeasible or finds a yet unknown non-dominated solution.

The Frontier Partitioner Algorithm returns the complete Pareto
frontier )y of (BOIP) after having addressed 2| V| + 1
single-objective integer programs.




Improving the complexity of FPA
Use smart weights

In order to identify all || non-dominated points of a BOIP by

solving a sequence of subproblems, any criterion space algorithm
for BOIPs must solve at least |)y| subproblems
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Improving the complexity of FPA

Use smart weights

In order to identify all || non-dominated points of a BOIP by
solving a sequence of subproblems, any criterion space algorithm
for BOIPs must solve at least |)y| subproblems
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The complexity of any criterion space algorithm is O(|Vy|)



Improving the complexity of FPA

Use smart weights

In order to identify all || non-dominated points of a BOIP by
solving a sequence of subproblems, any criterion space algorithm
for BOIPs must solve at least |)y| subproblems

|

The complexity of any criterion space algorithm is O(|Vy|)

We can drop down the complexity of FPA
from 2|Yn| + 1 to |Yn| + 1 using smart weights!




FPA applied to the example

smart weights

X2 x3 <4
5
) [ ] L) L) L) [ ] L)
L]
L)
L]
@ 0 Py Py Py Py
-1 0 1 2 3 4 5
-1
L] L] L] L] L] ) L]
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FPA applied to the example

smart weights

[ ]

X1

2x1 —l.— 3xp > 11

s&
==

X1

2!

2




smart weights

FPA applied to the example
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FPA applied to the example

smart weights
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FPA applied to the example

smart weights




Which BOIPs can be addressed by FPA?
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Which BOIPs can be addressed by FPA?

| filx) = | v | INLP oracle ||
c™x with c € Z" 1 ILP
cTx with ¢ € Q" 1 ILP
XTx+cTxwith @Q>=0, Qe Z"™" cezZ" | 1 QCQIP
XTRx + cTx with @ =0, Qe Q™", ce Q" % QCQIP
. Z" — 7., convex 1 CIP

Table: Classes of functions that satisfy the positive gap value assumption.
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Numerical results

Algorithm FPA

e is implemented in Java

e uses CPLEX 12.7.1 to address the scalarized problem (INLP)
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e biobjective integer linear instances
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Numerical results

Algorithm FPA
e is implemented in Java
e uses CPLEX 12.7.1 to address the scalarized problem (INLP)

We took instances available at
http://home.ku.edu.tr/~moolibrary/

We tested FPA on

e biobjective integer linear instances
we compare FPA with the Balanced Box Method
[Boland et al. (2015) INFORMS Journal on Computing,
27(4), 735-754]

e biobjective integer convex quadratic instances


http://home.ku.edu.tr/~moolibrary/

profiles. Mathematical Programming, 91, 201-213.]
Given

Comparison via performance profiles
[Dolan, E. and Moré, J. (2002). Benchmarking optimization software with performance

e a set of solvers S

e a set of problems P
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[Dolan, E. and Moré, J. (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming, 91, 201-213.]

Given

e a set of solvers S

e a set of problems P

We define the performance ratio

Ips = tps/ min{t,s : s’ € S},
where t, s is the computational time



Comparison via performance profiles
[Dolan, E. and Moré, J. (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming, 91, 201-213.]

Given

e a set of solvers S

e a set of problems P

We define the performance ratio

Ips = tps/ min{t,s : s’ € S},
where t, s is the computational time

The performance profile for s € S is the plot of the cumulative
distribution function p;:

ps(1) =P EP: rps < 7}/IP|
a9 => (= DA



Results on biobjective integer linear instances

Performance profiles related to the CPU time

1,

0.8 -

0.6

0.4

0.2

— BBM
— FPA-W(0.5,0.5)
— FPA-W(0.1,0.9)
— FPA-W/(0.25,0.75)
— FPA*

— FPA2




Results on biobjective integer quadratic instances

Performance profiles related to the CPU time

1 1
B | | |
0.8 1
0.6 0.957
0.4 1
0o —— FPA-W(0.5,0.5)
024 : — FPA-W(0.1,0.9)
— FPA-W(0.25,0.75)
—FPA2
0
T T T

T T T T T
100.8 101 101.2 101.4 101.6
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FPA summary

FPA is a criterion space algorithm for biobjective integer
programming problems that

o = = = z 9ace



FPA summary

FPA is a criterion space algorithm for biobjective integer
programming problems that

e Can handle several classes of biobjective integer nonlinear
programming problems



FPA summary

FPA is a criterion space algorithm for biobjective integer
programming problems that

e Can handle several classes of biobjective integer nonlinear
programming problems

e It is based on the use of properly defined inequalities

u]
o)
I
i
it
N -
Sk



FPA summary

FPA is a criterion space algorithm for biobjective integer
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e Can handle several classes of biobjective integer nonlinear
programming problems

e It is based on the use of properly defined inequalities
¢ Has the complexity of |Vy|+ 1



FPA summary

FPA is a criterion space algorithm for biobjective integer
programming problems that

e Can handle several classes of biobjective integer nonlinear
programming problems

e It is based on the use of properly defined inequalities
¢ Has the complexity of |Vy|+ 1

e On biobjective integer linear programming problems
outperforms existing state-of-the art methods



MOMIX: a decision space search method
for multi-objective mixed integer

convex programming problems
M. De Santis, G. Eichfelder, J. Niebling, S. Rocktaschel

Solving multiobjective mixed integer convex optimization problems,
SIAM Journal on Optimization 30 (4), 3122-3145 (2020)
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MOMIX: a decision space search method for (MOMIC)

MOMIX adresses Multiobjective Mixed Integer Nonlinear
programming problems of the following form:
min  (A(x),..., fm(x))7T
st. gk(x) <0 k=1,....p
x € B :=[l,u]
xi €7 Viel,

(MOMIC)
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MOMIX: a decision space search method for (MOMIC)

MOMIX adresses Multiobjective Mixed Integer Nonlinear
programming problems of the following form:

min  (A(x),..., fm(x))7T

st. g(x)<0 k=1,...,p (MOMIC)

x € B :=[l,u]
xi €Z Yiel,

where
e gk :B—=R; j=1,....,m; k=1,...,p convex and
differentiable
e /,uc R" are lower and upper bounds on the decision variables
e the index set | C {1,...,n} specifies which variables have to
take integer values



main ingredients

MOMIX: a decision space search method for (MOMIC)

MOMIX is a branch-and-bound method based on partitioning the
feasible set of (MOMIC)
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main ingredients

MOMIX: a decision space search method for (MOMIC)

MOMIX is a branch-and-bound method based on partitioning the
feasible set of (MOMIC)

functions on feasible points

e Branching rule: based on bisections of the box B
e Upper bound computation: evaluation of the objective
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MOMIX: a decision space search method for (MOMIC)

main ingredients

MOMIX is a branch-and-bound method based on partitioning the
feasible set of (MOMIC)

e Branching rule: based on bisections of the box B

e Upper bound computation: evaluation of the objective
functions on feasible points

e Lower bound computation: linear outer approximation of
the image set



Some notation

By B2, B% and B&” we denote the following sets related to the
constraints in (MOMIC):

B& .= {x € B | g(x) <0}

BZ:={xeB|xcZforallicl}
B&Z .= B& N BZ
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Some notation

By B2, B% and B&” we denote the following sets related to the
constraints in (MOMIC):

B& .= {x € B | g(x) <0}

BZ:={xeB|xcZforallicl}
B&Z .= B& N BZ

Using these sets, we can write (MOMIC) in short form as

min f(x)

st. x € B&”
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Upper Bounds and Local Upper Bounds

Two lists of points are kept updated and used for pruning:

o Lpns C f(B&Z): potentially nondominated solutions
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Upper Bounds and Local Upper Bounds
Two lists of points are kept updated and used for pruning:

o Lpns C f(B&Z): potentially nondominated solutions

e Lius € R™: Jocal upper bounds

[Klamroth et al., On the representation of the search region in
multi-objective optimization., EJOR (2015)]
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Upper Bounds and Local Upper Bounds

Two lists of points are kept updated and used for pruning:

o Lpns C f(B&7): potentially nondominated solutions

e Liug € R™: local upper bounds
[Klamroth et al., On the representation of the search region in
multi-objective optimization., EJOR (2015)]

Consider a subbox B CB
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Upper Bounds and Local Upper Bounds
Two lists of points are kept updated and used for pruning:

o Lpns C f(B&7): potentially nondominated solutions

e Liug € R™: local upper bounds
[Klamroth et al., On the representation of the search region in
multi-objective optimization., EJOR (2015)]

Theorem

Consider a subbox B CB
Let L;yg be the local upper bound set w.r.t. Lpys

If p¢f(B&%)+RT  holds for all p € Liys

B does not contain any efficient point for (MOMIC)

y




Pruning of the node

example on a bi-objective purely integer instance

>
E @ Lpns
i X Lius
[y ° f(ég,Z)
0
—)fl
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Lower bounds

image set of a bi-objective purely integer instance

f> e o .
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At every node of the
branch-and-bound tree a
subbox B C B is
selected



Lower bounds

image set of a bi-objective purely integer instance

fé L] L] [ )

o At every node of the

. branch-and-bound tree a
. subbox B C B is

selected

a lower bound is any set
. e . Lz € R™ such that

. f(B&%) C Lg +RT
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Lower bounds

convex hull of the image set

f

In particular conv(f(B&7%))
is a lower bound



Lower bounds

convex hull of the image set

f

In particular conv(f(B&7%))
is a lower bound

we look for sets Lg:

conv(f(B&%)) C Lg +RT
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Lower bounds computation

At every node a subbox B C B is selected
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Lower bounds computation

At every node a subbox B C B is selected

and a linear outer approximation Lz of conv(f(B&%)) is built:
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Lower bounds computation

At every node a subbox B C B is selected

and a linear outer approximation Lz of conv(f(B&%)) is built

f(B&%) C conv(f(BE%)) C Lg + RT
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Lower bounds computation
At every node a subbox B C B is selected

and a linear outer approximation Lz of conv(f(B&%)) is built
f(B&%) C conv(f(BE%)) C Lg + RT

if p¢Lls+RY

holds for all p € L,y
the node can be pruned (or the box B can be discarded) as

B does not contain any efficient point for (MOMIC)
oy 9 - = Hae



Lower bounding procedure: Step 1

computation of the ideal point

As a first step, we

compute the ideal point
fid ¢ R™ of f(BE)

DA
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Lower bounding procedure: Step 1

computation of the ideal point

As a first step, we

compute the idgal point
fid ¢ R™ of f(BE)

id
f

= min g, fi(x)
j=1...,m

DA

u]
v
a
o)
i
i
-
it
ey
o



Lower bounding procedure: Step 2
computation of supporting hyperplanes for f(ég)

Let pe Liys

if pelg+RT wetry
to improve Lg by
computing a further
hyperplane

fid
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Lower bounding procedure: Step 2
computation of supporting hyperplanes for f(ég)

Let p€ Ly

if pelg+RT wetry
to improve Lz by
computing a further
hyperplane

min t

s.t. f(x) < p+te
x € B8
teR




Computation of supporting hyperplanes for f(B%)

address a single-objective continuous convex problem

Let (%,f) € B# x R be a minimal solution of the problem

min t

st. f(x) < p+te
x € B8
teR
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Computation of supporting hyperplanes for f(ég)

address a single-objective continuous convex problem

Let (%,f) € B# x R be a minimal solution of the problem

min t

st. f(x) < p+te
x € B8
teR

Then a supporting hyperplane of f(B%) is given by

HM®) = {y e R™ [ ATy = AT 9(p)}
with
e e R a Lagrange multiplier for f(%) < p + fe
o 9(p)i=p+ fe
see e.g. [Lohne et al., J. Global Optim. (2014)]
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Implications

There exist two possibilities:
(i) t>0
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Computation of supporting hyperplanes for f(B%)

There exist two possibilities:

(i) t>0=p¢ Lz +RT

we improve the lower bound adding by HAY(P)
and consider the next local upper bound

o = = Do



Computation of supporting hyperplanes for f(ég)
Implications

There exist two possibilities:

(i) t>0=p¢ Lz +RT

we improve the lower bound adding by HAY(P)
and consider the next local upper bound



Implications

Computation of supporting hyperplanes for f(ég)

There exist two possibilities:

(i) t>0=p¢ Lz +RT

we improve the lower bound adding by HAY(P)
and consider the next local upper bound

(i) t<0=pelg+RT
we cannot prune the node

we refine the outer approximation of conv(f(B&7))
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Lower bounding procedure: Step 3

computation of supporting hyperplanes for conv(f(ég’z))

f2

if £<0

we address a
single-objective
mixed integer convex
programming problem
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Lower bounding procedure: Step 3

computation of supporting hyperplanes for conv(f(ég’z))

f2

if£<0

we address a
single-objective
mixed integer convex
programming problem

min AT f(x)
st. x € B&Z
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Computation of supporting hyperplanes for conv(f(B&%))
address a single-objective mixed integer convex problem
Let X € B&Z be a minimal solution of

min S\Tf(x)

st. x € B&Z
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Computation of supporting hyperplanes for conv(f(B&7%))
address a single-objective mixed integer convex problem
Let X € B&Z be a minimal solution of

min AT f(x)
st. x € B&L

o A supporting hyperplane of conv(f(B%%)) is given by

HMG®) = (y e R™ [ ATy = RTF(R)}
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Computation of supporting hyperplanes for conv(f(B&7%))
address a single-objective mixed integer convex problem
Let X € B&Z be a minimal solution of

min AT f(x)

st. x € B&Z

o A supporting hyperplane of conv(f(B%%)) is given by
HMG®) = (y e R™ [ ATy = RTF(R)}

e f(X) is an upper bound for (MOMIC)
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Implications

Again two situations occur:

Computation of supporting hyperplanes for conv(f(égvz))

(i) ATp < ATf(8)
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Computation of supporting hyperplanes for conv(f(B&7%))
Implications
Again two situations occur:
(i) ATp < ATF(®)
we improve the outer approximation by H»f(%)
and consider the next local upper bound

(i) ATp > ATH(
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Implications

Computation of supporting hyperplanes for conv(f(égvz))

Again two situations occur:

(i) ATp < ATF(®)

we improve the outer approximation by HM ()
and consider the next local upper bound
(i) ATp > ATF(%

%)

the local upper bound p lies above
the hyperplane HAF(%)
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Implications

Computation of supporting hyperplanes for conv(f(égvz))

Again two situations occur:

(i) ATp < ATF(®)

we improve the outer approximation by H»f(%)
and consider the next local upper bound

(i) ATp > ATF(%

%)

the local upper bound p lies above
the hyperplane HAF(%)

and we branch the current node by bisecting B
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Input of MOMIX: § > 0 prescribed precision
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Correctness results

detection of both the efficient and the nondominated set

Input of MOMIX: & > O prescribed precision
Output of MOMIX:

o Ls: list of subboxes B C B with width w(B) < §
o Lpps: list of upper bounds



Correctness results

detection of both the efficient and the nondominated set

Let E C B8 be the efficient set of (MOMIC).
Let Ls be the output of MOMIX. Then Lg is a cover of E, namely
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Correctness results

detection of both the efficient and the nondominated set

Let E C B8 be the efficient set of (MOMIC).
Let Ls be the output of MOMIX. Then Lg is a cover of E, namely

v
Theorem

Let § > 0 be the input parameter and Lpys, Ls be the output
of MOMIX. Let L;yg be the local upper bound set with respect to
Lpns. Then

(e c( U e -rD)N( U (z-Lie} +RrD)

PELLUB z€Lpns

v




Example - bi-objective instance with L§ = 0.1y/2
part of the image set
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Numerical results

e Comparison between MOMIX and MOMIXjzp:

on three bi-objective scalable instances with convex quadratic
objective functions and constraints
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e Comparison between MOMIX and MOMIXjzp:

on three bi-objective scalable instances with convex quadratic
objective functions and constraints

e MOMIX and MOMIXjjp: are implemented in MATLAB R2018a
e within MOMIX we adopted the mixed integer quadratic solver
of GUROBI
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e Comparison between MOMIX and MOMIXjzp:
on three bi-objective scalable instances with convex quadratic
objective functions and constraints

e MOMIX and MOMIXjjp: are implemented in MATLAB R2018a

e within MOMIX we adopted the mixed integer quadratic solver
of GUROBI

e Comparison between MOMIX and the e-constraint method on a
bi-objective scalable instance



Numerical results

e Comparison between MOMIX and MOMIXjzp:
on three bi-objective scalable instances with convex quadratic
objective functions and constraints

e MOMIX and MOMIXjjp: are implemented in MATLAB R2018a

e within MOMIX we adopted the mixed integer quadratic solver
of GUROBI

e Comparison between MOMIX and the e-constraint method on a
bi-objective scalable instance

e Plot of Lpps obtained for an instance with three objectives
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variable 7 € {1,...,n}:
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Branching strategies

Let B = [/, ii] be a subbox of B

We consider the following two strategies to identify the branching
variable 7 € {1,..., n}:

(br1) Jy = argmax{d; — ;| i€ I}

lfiG,—;=0forallicl, ie.,in case all the integer variables
are fixed, define J; = argmax{d; — i | i€ {1,...,n} \ I}
Choose 7 €
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Branching strategies

Let B = [/, ii] be a subbox of B

We consider the following two strategies to identify the branching
variable 7 € {1,..., n}:

(br1) Jy = argmax{d; — ;| i€ I}
lfiG,—;=0forallicl, ie.,in case all the integer variables
are fixed, define J; = argmax{d; — i | i€ {1,...,n} \ I}
Choose 7 €

(br2) Jp = argmax{i; — I; | i € {1,...,n}}
If /b N1+ holds, choose 7€ NI

Otherwise, choose 7 € J,



Numerical results
Comparison between MOMIX and MOMIXjjgh:

MOMIX MOMIX jigh
(br1) (br2) (br1) (br2)

[ |C| CPU  #nod CPU  #nod CPU  #nod CPU  #nod
Test instance T2 - time limit 1800s

1 2 40.1 757 38.7 765 849.9 609 524.5 669

2 2 30.8 537 31.6 575 667.2 555 563.0 641

3 2 31.0 535 30.8 521 | 1381.2 1127 814.4 917

4 2 34.7 567 65.6 1095 - - | 11349 1285

5 2 38.5 587 81.5 1259 - - - -
10 2 350.3 2707 - - - - - -
Test instance T3 - time limit 1800s

1 2 15.5 301 14.6 299 | 1045.4 299 | 1025.6 299
10 2 36.5 413 27.1 353 - - - -
20 2 - - 46.9 411 - - - -
30 2 - - 80.4 471 - - - -
50 2 - - - - - - - -
Test instance T4 - time limit 3600s

1 2 41.5 749 44.3 771 296.3 747 225.6 801

2 2 226.2 3683 240.5 3761 - - | 3090.4 3701

3 2 | 1354.9 19127 | 1321.5 18451 - - - -

1 4 | 2199.5 23935 | 2246.6 24399 - - - -




Numerical results

Comparison with the e-constraint method on a bi-objective instance

following form:

The e-constraint method minimizes a sequence of
parameter-dependent single-objective optimization problems of the

min  f(x)
fl(X) S g
x € B&”

s.t.

(Pe)
The minima of the functions f; and f> define the interval where the
parameter ¢ belongs
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Comparison with the e-constraint method

Instance T2 with |/| =5,n=7: Lpns vs 52 solutions (¢) computed by e-constraint
method, solving 475 single-objective mixed integer problems
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Results on a tri-objective instance

The set Lpys from two different perspectives




MOMIX summary

defined lower bounds

e MOMIX is a branch-and-bound method for multiobjective
mixed integer convex problems based on the use of properly
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MOMIX summary

e MOMIX is a branch-and-bound method for multiobjective
mixed integer convex problems based on the use of properly
defined lower bounds

e linear outer approximations of the image set are built in an
adaptive way

e correctness guarantee in terms of detecting both the efficient
and the nondominated set of multiobjective mixed integer
convex problems according to a prescribed precision



Thanks for your attention!
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