
THE BRAVE NEW WORLD OF EXASCALE COMPUTING:
COMPUTATION IS FREE, DATA MOVEMENT IS NOT

Utz-Uwe Haus, Head of HPE HPC/AI EMEA Research Lab
2021-03-03

Supported by the European Union’s Horizon 2020 research and innovation program through grant agreement 801101.

TRR154/MINOA conference “Trends in Modelling, Simulation and Optimisation: Theory and Applications”

2

HPE HPC/AI EMEA RESEARCH LAB

Deep Technical
Collaboration

Research
Interests

Engagement

Models

• HPE & Customers work together
• Focus on new technologies
• Drive future HPE products
• Long term technical relationship

• Memory hierarchy
• Data Movement and Workflows
• Novel accelerators, highly heterogenous

systems
• Compilers and mathematical optimisation
• HPC in Cloud, AI and Big Data
• System and site monitoring and data analysis

• Advanced Collaboration Centers in Centers
of Excellence

• Value Add projects
• EU H2020 research projects

3

ADVANCED COLLABORATION CENTERS IN EMEA

ARCHER/ARCHER2,
UK
• LASSi - IO Monitoring

and Analytics
• Application tuning

(XC30/EX)
• IO Performance

Optimisation

KAUST, KSA
• Numerical linear algebra

libraries
• Asynchronous tasking
• Deep Learning for Bio-

Science

GW4
• ARM system tuning
• ARM ecosystem

development
• Joint ARM, Cavium

partnership

Coming up: LUMI and HLRS

4

CURRENT H2020 PROJECTS

EXPERTISE

MAESTRO

EPIGRAM-HS

SODALITE

Plan4Res

Funded PhD secondments

Any of a class of extremely powerful computers. The term is commonly applied to the fastest high-
performance systems available at any given time.

- Britannica

[A device for] processing of massively complex or data-laden problems using the concentrated
compute resources of multiple computer systems working in parallel.

- HPE

[a device to] handle and compute on volumes of data at speeds hundreds to millions of times faster
than on a typical data center server

- nimbix

A supercomputer is a computer with a high level of performance as compared to a general-purpose
computer.

- Wikipedia

5

WHAT IS A SUPERCOMPUTER?

A supercomputer is a device for turning compute-bound problems into I/O-bound problems.
- Ken Batcher

A supercomputer is scientific instrument.
- folklore

6

EXA..WHAT?

• Exascale computing: 10!" Floating Point Operations per second (FLOPS)
• Measured by LINPACK:

• solve 𝐴𝑥 = 𝑏 for dense 𝐴
• using LU factorization with partial pivoting

• with
#
$
𝑛$ + 𝑂(𝑛#) operations

• In double-precision IEEE floating point
• Theoretical peak performance 𝑅%&'(

• ignoring communication between compute units

https://www.top500.org/

Raspberry Pi-4B 13.5 GF

iPhone 11 A13 0.8 TF

Nvidia Titan V 110 TF

https://www.top500.org/

7

MAJOR LEAPS IN PERFORMANCE: 3 ERAS OF SUPERCOMPUTING

ASCI White

Jaguar

Titan

Summit

Frontier
El Capitan

1990 2000 2010 2020 2030

Performance of top supercomputers breaking FLOPS barriers

INGREDIENTS IN A CRISIS
CURRENTLY HAPPENING

8

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

9

MEMORY V.S. COMPUTATION: THEN AND NOW

System Performance 160 MFLOPS 537 PFLOPS 3356250000x
Perf/node 160 MFLOPS 3.38 TFLOPS 21125x
Memory capacity /node 8 MB 32 GB 4000x
Memory bandwidth /node 640 MB/s 1024 GB/s 1600x
Memory bandwidth / flop 4 0.3 1/13 x

Cray 1, 1975 Fugaku, 2020

Moore’s Law

“The number of transistors in
a dense integrated circuit (IC)
doubles about every two
years.

10

SEMICONDUCTOR WISDOMS (1)

The end of Dennard Scaling (2006)

“As transistors get smaller,
their power density stays
constant, so that the power
use stays in proportion with
area; both voltage and
current scale (downward)
with length“

11

SEMICONDUCTOR WISDOMS (2)

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Energy cost, in picojoules (pJ)
per 64-bit floating-point
operation.

Note that the double-
precision floating-point
arithmetic (DP FP Op) energy
cost is comparable to that for
moving the same data 1mm–
5mm on chip.

That cost is dwarfed by the
cost of any movement of this
same data off chip.

12

DATA MOVEMENT COST

Leland et al., report SAND2016-9583

(pJ)

MEMORY IS DIVERSE

● Caches L1,L2,L3
● DRAM
● GDRAM
● NUMA domains
● HBM/MCDRAM
● NVDIMM
● Node-local SSD
● …
● Object Storage
● GFS

13

Intel Xeon Gold 6230 Cascade Lake
architecture

• 2 packages

• 2 NUMA nodes

• 10 cores

• 2 threads

• 2 NVDIMM managed with
kmem DAX driver

DATA MOVEMENT IS HARD
AND A MAJOR PERFORMANCE BOTTLENECK

It’s a dynamic (robust) vehicle routing problem with
inventories and splittable resources. Contains

● Splittable flow
● Packing
● Job shop scheduling

➤Mathematically hard; hard to approximate

➤ Practically hard:

● No uniform programming model
● no system model to compute optimal schedules

at scale

14

Is it still a hierarchy?

● Latency, bandwidth, capacity numbers not
monotone anymore

● Some have separate address spaces
● Some not under our control

Move computations, not data Recompute instead of reload
Decouple instructions (code)
and data movement
Beware of von Neumann
architecture bottleneck, in
particular the word-by-word
traffic paradigm

Remember when + and ∗ were
counted with different costs
multipliers in CS101?

Our complexity classes don’t
capture instruction sets well
where computation and data
movement have exponentially
different cost.

Communication-avoiding
algorithms are a niche topic.

Overlapping data movement
and compute is no longer
sufficient.

Ghosting, cache-oblivious or
write-avoiding algorithms,
architecture/topology-aware
implementations are limited
(and not future-proof)

Functional programming is the
right abstraction: well-defined
side-effect-free/closure-
confined computations.

Count energy, not instructions

15

INGREDIENTS FOR A SOLUTION

Wikimedia, CC BY-SA 3.0

https://en.wikipedia.org/wiki/Von_Neumann_architecture

• At workflow level, explicit
• Rise of heterogeneous coupled

applications
–Analytics, Systems Biology, Live “Big Data”

processing

• In HPC
• Parallel File System as backbone of

implicit workflows
–Simulation-analysis coupling, checkpointing,

archiving
–Coupler frameworks/middlewares

16

• In Programming Environment
• Distributed tasking: HPX, PaRSEC, Legion,

swift-lang, (StarPU), …
• On-node tasking: OMP tasking, StarPU;

pthreads, ArgoBots, UPC
–Often lacking data locality information and data

movement cost metrics
• Functional paradigms entering

mainstream languages (C++xx)
• IO abstractions: Dataspaces, H5FDDSM,

ADIOS2

• In Hardware abstraction
• Dataflow architectures

Data dependency driven programming abounds
TASKING – A PARADIGM FOR DATA-AWARE PROGRAMMING

• Decompose program into tasks that are coupled by input-output relations
• A directed graph, tasks as nodes, data as arc labels, 𝛿!, 𝛿" as outputs/inputs
• Program execution:

– Marking of initial tasks as ‘ready to run’

– Executing (some) ‘ready-to-run’ tasks

– Marking successors of completed tasks as ‘ready-to-run’

• Acyclic in purely functional programming, cyclic with bounded number of cycle repeats for terminating non-
pure programs

• Example: 𝒃 = 𝑨𝒙 decomposes into 𝟐 +𝒎 tasks:
• T# : Scatter rows of 𝐀
• T$…T%: 𝒎 scalar product tasks 𝑨𝒊⋅𝒙
• T%!$: gather results into 𝑏

DATA DRIVEN TASKING 101

WHY?

Running additionally in asynchronous mode (Async) further
reduces time to solution (up to 2.8x), especially for medium
range of matrix sizes, where processing units run out of work
and look-ahead techniques jump right in to fill the performance
gap. For asymptotic matrix sizes, although work is abundant,
the asynchronous mode still provides additional performance.
In particular, on KNL and Haswell+8x80 systems, data move-
ment engendered by NUMA and PCIe channels is expensive
and can be overlapped by computations, thanks to the Async
optimization.

(a) Haswell.

(b) Broadwell.

(c) KNL.

(d) Haswell+8xK80.

Fig. 2. Assessing the performance of various incremental optimizations.

D. Execution Traces
Figure 3 shows the execution traces when running in syn-

chronous (Tile API) and asynchronous (Tile Async API)
modes. We have added additional synchronization points
within the Tile kernel API, after each panel/update computa-
tion, so that we can better capture the performance gain against
coarse-grained computations engendered by block algorithms,
as described in Section V. These traces have been obtained on
the KNL system for a matrix size of 10K. Since the matrix
is ill-conditioned, the task-based QDWH performs six itera-
tions (three QR-based and three Cholesky-based). The green,
blue and yellow blocks correspond to QR, Cholesky/Level
3 BLAS and Level 1/2 BLAS, respectively. We can clearly
notice the idle time during the first three QR-based iterations
when running with a synchronous mode (Figure 3(a)). The
performance impact of synchronous execution for the next
three Cholesky-based iterations is not as severe as QR-based
iterations because the Cholesky panel factorization involves
only the diagonal block (Figure 3(b)). For the subsequent

(a) Synchronous task-based QDWH.

(b) Asynchronous task-based QDWH.

Fig. 3. Assessing synchronous Vs asynchronous execution traces of task-
based QDWH on the KNL system with a matrix size of 10K.

graphs, the performance curves of the task-based QDWH
correspond to performance when all optimizations are enabled
(i.e., Async and OptId).

E. Performance Scalability
Figure 4 demonstrates the performance scalability of

the task-based QDWH implementation. The scalability
is almost linear for the commodity CPU systems (i.e,
Haswell/Broadwell). On KNL and Haswell+8xK80, although

Running additionally in asynchronous mode (Async) further
reduces time to solution (up to 2.8x), especially for medium
range of matrix sizes, where processing units run out of work
and look-ahead techniques jump right in to fill the performance
gap. For asymptotic matrix sizes, although work is abundant,
the asynchronous mode still provides additional performance.
In particular, on KNL and Haswell+8x80 systems, data move-
ment engendered by NUMA and PCIe channels is expensive
and can be overlapped by computations, thanks to the Async
optimization.

(a) Haswell.

(b) Broadwell.

(c) KNL.

(d) Haswell+8xK80.

Fig. 2. Assessing the performance of various incremental optimizations.

D. Execution Traces
Figure 3 shows the execution traces when running in syn-

chronous (Tile API) and asynchronous (Tile Async API)
modes. We have added additional synchronization points
within the Tile kernel API, after each panel/update computa-
tion, so that we can better capture the performance gain against
coarse-grained computations engendered by block algorithms,
as described in Section V. These traces have been obtained on
the KNL system for a matrix size of 10K. Since the matrix
is ill-conditioned, the task-based QDWH performs six itera-
tions (three QR-based and three Cholesky-based). The green,
blue and yellow blocks correspond to QR, Cholesky/Level
3 BLAS and Level 1/2 BLAS, respectively. We can clearly
notice the idle time during the first three QR-based iterations
when running with a synchronous mode (Figure 3(a)). The
performance impact of synchronous execution for the next
three Cholesky-based iterations is not as severe as QR-based
iterations because the Cholesky panel factorization involves
only the diagonal block (Figure 3(b)). For the subsequent

(a) Synchronous task-based QDWH.

(b) Asynchronous task-based QDWH.

Fig. 3. Assessing synchronous Vs asynchronous execution traces of task-
based QDWH on the KNL system with a matrix size of 10K.

graphs, the performance curves of the task-based QDWH
correspond to performance when all optimizations are enabled
(i.e., Async and OptId).

E. Performance Scalability
Figure 4 demonstrates the performance scalability of

the task-based QDWH implementation. The scalability
is almost linear for the commodity CPU systems (i.e,
Haswell/Broadwell). On KNL and Haswell+8xK80, although

Avoid bulk synchronization

T. 12

T. 11 T. 10

T. 9

T. 6 T. 5

T. 8 T. 7

T. 4

T. 3 T. 2 T. 1

Compute
Node

Compute
Node

Compute
Node…

Do useful work more often!

Vehicle routing model
Route code along data

Packing:
Handling multiple concurrent
workflows

• Data immutable
• Explicit duplication operations

allowed
• Hypergraph in bipartite

representation
• “substances” (data objects)
• “reactions” (functional

transformations)
– A subset of transformations: data

movement
• Transformation cost function

(energy, time, …)
• Looks a lot like a Petri net

• Ordering constraints
• Machine-dependent execution

times
• Data handling implicit in

• Machine-dependent setup
times

• Sequence-dependent setup
times

• Reconfigurable machines: Data
hierarchy access

• Inside one problem instance
• ‘Machines’ have setup times,

amortized cost
• Competition for resources

• Across workflows
• Non-cooperating users
• Different/contradicting

objectives (makespan, energy,
…)

• In time, on resources, partially
splittable

• Often online

Job shop Scheduling:
Assign tuples of data and
code to compute resources

It’s a kind of VRP, but then again not
SCHEDULING?

System Monitoring Machine models
• Too coarse or too fine grained
• Based on hardware/software

parameters that often are not
suitable for a-priory models

• Often cannot be attributed to
tasks

• Congestion vs. nominal data

• Not automatic
• Post-mortem
• Resulting models not

sufficiently data-dependent

• Nominal behavior/stochastic
data

• Usable only at compiler or
HPC workload manager level

• Very complex for modern
large systems

Feedback profiling

20

WHERE’S THE INSTANCE DATA?

Building a middleware (dataplane) that operates at application-defined object level permits
• data location awareness
• measuring at object level
• Compiler/application/workflow level optimal scheduling

https://www.maestro-data.eu/

https://www.maestro-data.eu/

• HPC is a great target for operations research techniques
• Hardware and software system
• Interconnects
• Programming level

• Computational models disrupted
• Data centricity
• Heterogeneity up to the ‘Cloud-to-Edge’ level

• Many well-contained optimization problems and some extremely general ones

• After Exascale there’ll be Zetascale, so there is no shortage of scalable problem instances

21

OUTLOOK

… and I’ve not even talked about using mathematical programming on HPC systems

THANK YOU
uhaus@hpe.com

22

Note: Please update the background
image in the Thank You slide to match
your image for the title slide, using the
same process outlined in Slide 1 of this
template.

Tip! Remember to remove this text box.

