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HPE HPC/AI EMEA RESEARCH LAB

Deep Technical 
Collaboration

Research 
Interests

Engagement

Models

• HPE & Customers work together
• Focus on new technologies
• Drive future HPE products 
• Long term technical relationship

• Memory hierarchy
• Data Movement and Workflows
• Novel accelerators, highly heterogenous 

systems
• Compilers and mathematical optimisation
• HPC in Cloud, AI and Big Data
• System and site monitoring and data analysis

• Advanced Collaboration Centers in Centers 
of Excellence

• Value Add projects
• EU H2020 research projects
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ADVANCED COLLABORATION CENTERS IN EMEA

ARCHER/ARCHER2, 
UK
• LASSi - IO Monitoring 

and Analytics
• Application tuning 

(XC30/EX)
• IO Performance 

Optimisation

KAUST, KSA
• Numerical linear algebra 

libraries
• Asynchronous tasking
• Deep Learning for Bio-

Science

GW4
• ARM system tuning
• ARM ecosystem 

development
• Joint ARM, Cavium 

partnership

Coming up: LUMI and HLRS
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CURRENT H2020 PROJECTS

EXPERTISE

MAESTRO

EPIGRAM-HS

SODALITE

Plan4Res

Funded PhD secondments



Any of a class of extremely powerful computers. The term is commonly applied to the fastest high-
performance systems available at any given time.

- Britannica

[A device for] processing of massively complex or data-laden problems using the concentrated 
compute resources of multiple computer systems working in parallel.

- HPE

[a device to] handle and compute on volumes of data at speeds hundreds to millions of times faster 
than on a typical data center server

- nimbix

A supercomputer is a computer with a high level of performance as compared to a general-purpose 
computer.

- Wikipedia
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WHAT IS A SUPERCOMPUTER?

A supercomputer is a device for turning compute-bound problems into I/O-bound problems.
- Ken Batcher

A supercomputer is scientific instrument.
- folklore
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EXA..WHAT?

• Exascale computing: 10!" Floating Point Operations per second (FLOPS)
• Measured by LINPACK: 

• solve 𝐴𝑥 = 𝑏 for dense 𝐴
• using LU factorization with partial pivoting

• with 
#
$
𝑛$ + 𝑂(𝑛#) operations

• In double-precision IEEE floating point
• Theoretical peak performance 𝑅%&'(

• ignoring communication between compute units

https://www.top500.org/

Raspberry Pi-4B 13.5 GF

iPhone 11 A13 0.8 TF

Nvidia Titan V 110 TF

https://www.top500.org/
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MAJOR LEAPS IN PERFORMANCE: 3 ERAS OF SUPERCOMPUTING

ASCI White

Jaguar

Titan

Summit

Frontier
El Capitan

1990 2000 2010 2020 2030

Performance of top supercomputers breaking FLOPS barriers



INGREDIENTS IN A CRISIS 
CURRENTLY HAPPENING

8

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
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MEMORY V.S. COMPUTATION: THEN AND NOW

System Performance 160 MFLOPS 537 PFLOPS 3356250000x
Perf/node 160 MFLOPS 3.38 TFLOPS             21125x
Memory capacity /node        8 MB 32 GB 4000x
Memory bandwidth /node     640 MB/s 1024 GB/s 1600x
Memory bandwidth / flop      4 0.3 1/13 x 

Cray 1, 1975 Fugaku, 2020



Moore’s Law

“The number of transistors in 
a dense integrated circuit (IC) 
doubles about every two 
years.
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SEMICONDUCTOR WISDOMS (1)



The end of Dennard Scaling (2006)

“As transistors get smaller, 
their power density stays 
constant, so that the power 
use stays in proportion with 
area; both voltage and 
current scale (downward) 
with length“
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SEMICONDUCTOR WISDOMS (2)

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/



Energy cost, in picojoules (pJ) 
per 64-bit floating-point 
operation.

Note that the double-
precision floating-point 
arithmetic (DP FP Op) energy 
cost is comparable to that for 
moving the same data 1mm–
5mm on chip.

That cost is dwarfed by the 
cost of any movement of this 
same data off chip.

12

DATA MOVEMENT COST

Leland et al., report SAND2016-9583

(pJ)



MEMORY IS DIVERSE

● Caches L1,L2,L3
● DRAM
● GDRAM
● NUMA domains
● HBM/MCDRAM
● NVDIMM
● Node-local SSD
● …
● Object Storage
● GFS
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Intel Xeon Gold 6230 Cascade Lake 
architecture

• 2 packages

• 2 NUMA nodes

• 10 cores

• 2 threads

• 2 NVDIMM managed with 
kmem DAX driver



DATA MOVEMENT IS HARD
AND A MAJOR PERFORMANCE BOTTLENECK

It’s a dynamic (robust) vehicle routing problem with 
inventories and splittable resources. Contains

● Splittable flow
● Packing 
● Job shop scheduling

➤Mathematically hard; hard to approximate

➤ Practically hard: 

● No uniform programming model
● no system model to compute optimal schedules 

at scale
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Is it still a hierarchy?

● Latency, bandwidth, capacity numbers not 
monotone anymore

● Some have separate address spaces
● Some not under our control



Move computations, not data Recompute instead of reload
Decouple instructions (code) 
and data movement
Beware of von Neumann 
architecture bottleneck, in 
particular the word-by-word 
traffic paradigm

Remember when + and ∗ were 
counted with different costs 
multipliers in CS101?

Our complexity classes don’t 
capture instruction sets well 
where computation and data 
movement have exponentially 
different cost.

Communication-avoiding 
algorithms are a niche topic.

Overlapping data movement
and compute is no longer 
sufficient.

Ghosting, cache-oblivious or 
write-avoiding algorithms, 
architecture/topology-aware 
implementations are limited 
(and not future-proof)

Functional programming is the 
right abstraction: well-defined 
side-effect-free/closure-
confined computations.

Count energy, not instructions
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INGREDIENTS FOR A SOLUTION

Wikimedia, CC BY-SA 3.0

https://en.wikipedia.org/wiki/Von_Neumann_architecture


• At workflow level, explicit
• Rise of heterogeneous coupled 

applications
–Analytics, Systems Biology, Live “Big Data” 

processing

• In HPC
• Parallel File System as backbone of 

implicit workflows
–Simulation-analysis coupling, checkpointing, 

archiving
–Coupler frameworks/middlewares
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• In Programming Environment
• Distributed tasking: HPX, PaRSEC, Legion, 

swift-lang, (StarPU), …
• On-node tasking: OMP tasking, StarPU; 

pthreads, ArgoBots, UPC
–Often lacking data locality information and data 

movement cost metrics
• Functional paradigms entering 

mainstream languages (C++xx)
• IO abstractions: Dataspaces, H5FDDSM, 

ADIOS2

• In Hardware abstraction
• Dataflow architectures

Data dependency driven programming abounds
TASKING – A PARADIGM FOR DATA-AWARE PROGRAMMING 



• Decompose program into tasks that are coupled by input-output relations
• A directed graph, tasks as nodes, data as arc labels, 𝛿!, 𝛿" as outputs/inputs
• Program execution: 

– Marking of initial tasks as ‘ready to run’ 

– Executing (some) ‘ready-to-run’ tasks

– Marking successors of completed tasks as ‘ready-to-run’

• Acyclic in purely functional programming, cyclic with bounded number of cycle repeats for terminating non-
pure programs

• Example: 𝒃 = 𝑨𝒙 decomposes into 𝟐 +𝒎 tasks:
• T# : Scatter rows of 𝐀
• T$…T%: 𝒎 scalar product tasks 𝑨𝒊⋅𝒙
• T%!$: gather results into 𝑏

DATA DRIVEN TASKING 101



WHY?

Running additionally in asynchronous mode (Async) further
reduces time to solution (up to 2.8x), especially for medium
range of matrix sizes, where processing units run out of work
and look-ahead techniques jump right in to fill the performance
gap. For asymptotic matrix sizes, although work is abundant,
the asynchronous mode still provides additional performance.
In particular, on KNL and Haswell+8x80 systems, data move-
ment engendered by NUMA and PCIe channels is expensive
and can be overlapped by computations, thanks to the Async
optimization.

(a) Haswell.

(b) Broadwell.

(c) KNL.

(d) Haswell+8xK80.

Fig. 2. Assessing the performance of various incremental optimizations.

D. Execution Traces
Figure 3 shows the execution traces when running in syn-

chronous ( Tile API) and asynchronous ( Tile Async API)
modes. We have added additional synchronization points
within the Tile kernel API, after each panel/update computa-
tion, so that we can better capture the performance gain against
coarse-grained computations engendered by block algorithms,
as described in Section V. These traces have been obtained on
the KNL system for a matrix size of 10K. Since the matrix
is ill-conditioned, the task-based QDWH performs six itera-
tions (three QR-based and three Cholesky-based). The green,
blue and yellow blocks correspond to QR, Cholesky/Level
3 BLAS and Level 1/2 BLAS, respectively. We can clearly
notice the idle time during the first three QR-based iterations
when running with a synchronous mode (Figure 3(a)). The
performance impact of synchronous execution for the next
three Cholesky-based iterations is not as severe as QR-based
iterations because the Cholesky panel factorization involves
only the diagonal block (Figure 3(b)). For the subsequent

(a) Synchronous task-based QDWH.

(b) Asynchronous task-based QDWH.

Fig. 3. Assessing synchronous Vs asynchronous execution traces of task-
based QDWH on the KNL system with a matrix size of 10K.

graphs, the performance curves of the task-based QDWH
correspond to performance when all optimizations are enabled
(i.e., Async and OptId).

E. Performance Scalability
Figure 4 demonstrates the performance scalability of

the task-based QDWH implementation. The scalability
is almost linear for the commodity CPU systems (i.e,
Haswell/Broadwell). On KNL and Haswell+8xK80, although
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Avoid bulk synchronization

T. 12

T. 11 T. 10

T. 9

T. 6 T. 5

T. 8 T. 7

T. 4

T. 3 T. 2 T. 1

Compute 
Node

Compute 
Node

Compute 
Node…

Do useful work more often!



Vehicle routing model
Route code along data

Packing:
Handling multiple concurrent 
workflows

• Data immutable
• Explicit duplication operations 

allowed
• Hypergraph in bipartite 

representation
• “substances” (data objects) 
• “reactions” (functional 

transformations)
– A subset of transformations: data 

movement
• Transformation cost function 

(energy, time, …)
• Looks a lot like a Petri net

• Ordering constraints
• Machine-dependent execution 

times
• Data handling implicit in

• Machine-dependent setup 
times

• Sequence-dependent setup 
times

• Reconfigurable machines: Data 
hierarchy access

• Inside one problem instance
• ‘Machines’ have setup times, 

amortized cost
• Competition for resources

• Across workflows
• Non-cooperating users
• Different/contradicting 

objectives (makespan, energy, 
…)

• In time, on resources, partially 
splittable

• Often online

Job shop Scheduling:
Assign tuples of data and 
code to compute resources

It’s a kind of VRP, but then again not
SCHEDULING? 



System Monitoring Machine models
• Too coarse or too fine grained
• Based on hardware/software

parameters that often are not
suitable for a-priory models

• Often cannot be attributed to
tasks

• Congestion vs. nominal data

• Not automatic
• Post-mortem
• Resulting models not 

sufficiently data-dependent

• Nominal behavior/stochastic 
data

• Usable only at compiler or 
HPC workload manager  level

• Very complex for modern 
large systems

Feedback profiling
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WHERE’S THE INSTANCE DATA?

Building a middleware (dataplane) that operates at application-defined object level permits
• data location awareness
• measuring at object level
• Compiler/application/workflow level optimal scheduling  

https://www.maestro-data.eu/

https://www.maestro-data.eu/


• HPC is a great target for operations research techniques
• Hardware and software system
• Interconnects
• Programming level

• Computational models disrupted
• Data centricity
• Heterogeneity up to the ‘Cloud-to-Edge’ level

• Many well-contained optimization problems and some extremely general ones

• After Exascale there’ll be Zetascale, so there is no shortage of scalable problem instances
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OUTLOOK

… and I’ve not even talked about using mathematical programming on HPC systems



THANK YOU
uhaus@hpe.com
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Note: Please update the background 
image in the Thank You slide to match 
your image for the title slide, using the 
same process outlined in Slide 1 of this 
template.

Tip! Remember to remove this text box.


