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OVERVIEW

1. Motivation: A stochastic combinatorial optimization problem that
needs an manageable encoding of families of paths

2. Binary decision diagrams: Concept and some efficient
constructions

3. Discrete Relaxations using BDDs
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About ERL



HPE HPC/AI EMEA RESEARCH LAB

We’re a European research group in HPE, working on the most challenging
problems in high performance computing for the Exascale era and beyond.

Offices in Basel, Grenoble and Bristol.

Part of the HPE HPC CTO office.

https://hpe.com/emea_europe/en/compute/hpc/emea-research-lab.html
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Goals and Motivation
(H., Laumanns, Michini 2015)
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• Shortest paths between two locations

• Expected shortest path after quake

• Network stabilization? Network extension?
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INTRODUCTION: INFRASTRUCTURE RISK

• Decision­dependent uncertainty in stochastic networks

• Robustification of Infrastructure
• Network interdiction problems
• Project task networks: reducing risk on critical path

• Models

• failure protection, cost­robustness
• structural robustness
•

• modeling and solution approaches:

• (worst­case­) robust optimization
• models with failure tolerant feasibility
•
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Endogenous robustness



NETWORKS WITH UNCERTAIN DATA

Setting
A network problem with uncertain cost, resources, or capacities: uncertainty
region ∆

Approaches
• both worst­case (∀δ ∈ ∆) and best­case (∃δ ∈ ∆) are interesting

• ∀: reformulate and solve robust counterpart as LP/IP/...

• ∃: reformulate and solve as generalized LP(/IP/...)

• ... or separate robust/generalized (split­)cuts directly

• Caveat 1: reformulation often destroys combinatorial structure

• Caveat 2: even shortest path with 2 cost scenarios is (weakly) NP­hard
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PRE­DISASTER INVESTMENT PLANNING

Example
Consider a graph G = (V,E), edge lengths (le)e∈E, and edge stability
probabilities (pe)e∈E.
Scenarios: Sets of surviving edges after a disaster. Let fSP(s, t,Gξ) the
shortest path length between nodes s, t ∈ V. Decisions xe = 1 correspond to
investments in edge stability to achieve p̃e = pe + δe.
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2­STAGE STOCHASTIC PROGRAM

Given is a weighted graph G = (V,E,w) and investment costs ce to harden/weaken
each link, which increases/decreases its survival probability from some given qe to re.

Decision structure

1. First stage decisions: link investments

xe ∈ {0, 1} for all e ∈ E

2. Second stage decisions: shortest/longest path, flow, ... with value

f(ξ)

in G = (V,E \ ξ) under the realized scenario

ξ = (ξe)e∈E ∈ {0, 1}|E|

Problem: Minimize Eξ|x[f(ξ)] subject to c⊤x ≤ B (B : given budget)
Difficulties: • There are many (2|E|) scenarios ξ.

• Scenario probabilities depend on the investment decisions x.
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ENDOGENOUS UNCERTAINTY

Decision­dependent probabilities are a case of endogenous uncertainty, which is very
difficult to handle in Stochastic Programming.

Expressions for the decision­dependent scenario probabilities

Expected shortest path length︷ ︸︸ ︷
Eξ|x[f(ξ)] =

∑
ξ̃

Probability for scenario︷ ︸︸ ︷
P{ξ = ξ̃ | x} ·

shortest path length︷︸︸︷
f(ξ̃)

where the scenario probabilities are

P{ξ = ξ̃ | x} =
∏
e∈E

ξ̃e survival prob︷ ︸︸ ︷
[(1− xe)qe + xe] +(1− ξ̃e)

failure prob︷ ︸︸ ︷
[(1− xe)(1− qe)]


so polynomials in x of degree |E|.

How to deal with such non­linearities?

9



ENDOGENOUS UNCERTAINTY

Solution approaches

• scenario sampling/simulation

• Sample Average/Sample­Path: can yield statistically testable bounds

• partitioning or covering of the scenario space and exact reformulation

Example (cont.): Computation of expected path length

min
∑
ξ∈2E

∏
e∈ξ

pe
∏
e/∈ξ

(1− pe)

 fSP(s, t,Gξ = (V, ξ))

Instead of enumerating 2|E| scenarios one can partition into sets with same
f­value, whose probabilities can be computed. (Prestwich et al., ’13/14)
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AGGREGABLE PROBLEMS

A 2­stage stochastic optimization problem is called aggregable if

• f is order reversing (or order preserving) wrt. taking subsets of scenarios

ξ1 ⊆ ξ2 ⇒ f(ξ1) ≥ f(ξ2) (1)

for all ξ1, ξ2 ∈ 2E, and

• the probabilities of events e ∈ E are independent.

We denote the image of f by

C(f) = {α : α = f(ξ), ξ ∈ 2E},

and the minimal scenarios for each critical value by

M(f) = {Mα(f) : α ∈ C(f)},

where Mα(f) = {ξ ∈ 2E : f(ξ) = α, ∀ξ′ ⊂ ξ : f(ξ′) > f(ξ)}.
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AGGREGABLE PROBLEMS

Relevant Examples
‘tame’: problems where f(ξ) is computable in polynomial­time

• (multi­terminal­) shortest path

• number of edge­disjoint paths/k­connectivity

• longest paths in acyclic networks (critical path)

• maximal flows

• maximal/weight maximal matchings

• linear programs (with changing constraint set)

but also ‘wild’ ones

• clique number

12



Encoding Minimal Scenarios



MONOTONE BOOLEAN FUNCTIONS

Each Mα(f) induces a monotone1 Boolean function Φ≤
α on the scenarios

whose minimal true points are the elements of Mα(f):

Φ≤
α (ξ) = 1 if and only if f(ξ) ≤ α.

Encoding of Φ≤
α

• as DNF: using explicit list of Mα(f)

• as IP of covering­type: p⊤x ≥ 1 (∀p ∈ Mα(f))

• as BDD, constructed from explicit or implicit description of Mα(f)

• by using isomorphy of BDDs using the dual monotone Boolean function
¬(Φ≤

α (¬ξ))

1A Boolean function f is (up­)monotone iff ∀x ≤ y : f(x) ≤ f(y).
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BDDs



BINARY DECISION DIAGRAMS (BRYANT, 1986)

• layered (rooted) digraph

• arcs only between Li and Lj with j > i

• every node has 1 or 2 out­arcs

• true­arcs , false­arcs

• every path from root to ⊤ defines a
feasible solution (or ‘good’ family)

• every path from root to inner node
defines a partial solution

• no two sub­BDDs are isomorphic

• layer Li has width ωi = |Li|

• BDD­width ω = maxi ωi

L1

L2

L3

L4

L5

⊤

Every logical formula can be represented in a BDD.
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BDDS ENCODING MEMBERS OF AN INDEPENDENCE SYS­
TEMS

Top­down compilation rule for BDDs encoding the members of I.

Key ingredient: an oracle to decide if two minors of the circuit system of I are
equivalent.

Examples: stable sets, packing, matching, covering, knapsack.

If an efficient oracle is available, the procedure yields an output­linear time
algorithm for BDD compilation (e.g.: stable sets, packing, covering, but not
0/1­knapsack)

The size of BDDs depends heavily on the ordering of the variables.
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Aggregable Problems: Tools



FUNCTION IN CNF: COVERING PROBLEM

16

Let A ∈ {0, 1}m×n.

Ax ≥ 1

x ∈ {0, 1}n
(SC)

TOP­DOWN BDD COMPILATION:
Let u, v ∈ L4 with paths (1, 0, 0) and (0, 0, 1)

Example: x1+ x3+ x6 ≥ 1

x4+ x6 ≥ 1

x2+ x4+ x5 ≥ 1

x1+ x2+ x3+ ≥ 1

x3+ x4+ x5 ≥ 1

x ∈{0, 1}n
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Ax ≥ 1

x ∈ {0, 1}n
(SC)

TOP­DOWN BDD COMPILATION:
Let u, v ∈ L4 with paths (1, 0, 0) and (0, 0, 1)

Example: x1+ x3+ x6 ≥ 1

x4+ x6 ≥ 1

x2+ x4+ x5 ≥ 1

x1+ x2+ x3+ ≥ 1

x3+ x4+ x5 ≥ 1

x ∈{0, 1}n
(DNF of Φ≤

α yields CNF of dual function for free: BDD only needs swap of arc
types)



Pre­Disaster Investment
Planning



COMPUTING Prob[Φ≤
α = 1]: BDD TO LP

Recursive definition of intermediate probabilities for ‘scenarios with common
suffix’ in nodes in layer e∗. Survival probabilities pe for every event.

e1

e2

e3

e4

e5

n1

n2 n3

n4 n5

n6 n7

n8

⊤

leaf ⊤:
Prob[Φ(ξ) = 1] = 1
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e1

e2

e3

e4

e5

n1

n2 n3

n4 n5

n6 n7
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COMPUTING Prob[Φ≤
α = 1]: BDD TO LP

Recursive definition of intermediate probabilities for ‘scenarios with common
suffix’ in nodes in layer e∗. Survival probabilities pe for every event.

e1

e2

e3

e4

e5

n1

n2 n3

n4 n5

n6 n7

n8

⊤

layer e5 skipped below n7:

Prob[Φ(ξ) = 1]

=(1− pe4)

·

(
5∏

i=5

(pei + (1− pei))

)
·

· pchild
=pe4pchild
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COMPUTING Prob[Φ≤
α = 1]: BDD TO LP

Recursive definition of intermediate probabilities for ‘scenarios with common
suffix’ in nodes in layer e∗. Survival probabilities pe for every event.

e1

e2

e3

e4

e5

n1

n2 n3

n4 n5

n6 n7

n8

⊤

otherwise, e.g. n1:

Prob[Φ(ξ) = 1]

=pe∗pTrue­child + (1− pe∗)pFalse­child
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COMPUTING Prob[Φ≤
α = 1]: BDD TO LP

Recursive definition of intermediate probabilities for ‘scenarios with common
suffix’ in nodes in layer e∗. Survival probabilities pe for every event.

linear equations with O(ω(BDD) · |E|) auxilliary variables:

• leaf: Prob[Φ(ξ) = 1] = 1

• 1­child node (wlog: True­arc): Prob[Φ(ξ) = 1] = pe∗pchild

• layers 2..(l− 1) skipped (wlog: True­arc):
Prob[Φ(ξ) = 1] = pe∗pchild

• else: Prob[Φ(ξ) = 1] = pe∗pTrue­child + (1− pe∗)pFalse­child

17



COMPUTING Prob[Φ≤
α = 1|X]: BDD TO MIP

Consider binary decisions xe such that

pe(x) =

pe if xe = 0,

pe +∆e if xe = 1

(where ∆e ∈ [−pe, 1− pe]).

Define for every arc (u, v) ∈ A of the BDD with label ϵ(u) = e

p(u,v)(x) =

pe(x) if (u, v) ∈ A, ϵ(u) = e, l((u, v)) = 1

(1− pe(x)) if (u, v) ∈ A, ϵ(u) = e, l((u, v)) = 0,

and write the computations as linear inequalities, coupled with binaries xe
using big­M (M = 1).

Yields an (exact reformulation) MIP of size
4(# BDD­nodes)× ((# BDD­nodes) + |A|).

18



Discrete relaxations



DISCRETE RELAXATIONS

Continuous Relaxations

• ignore integrality requirements

• ignore some constraints and/or
use weaker valid constraints

• obtain a well­understood
(continuous) problem (LP,
convex, SDP, ...) with feasible
region including original one

Yield valid bounds

Discrete Relaxations

• preserve integrality requirements

• ignore some constraints and/or
use weaker valid constraints

• obtain a well­understood
(discrete) problem class with
feasible region including original
one

Yield valid bounds
Yield candidates for feasible solutions
or cuts

See primal reformulation techniques for inspirations.
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BDDS AS DISCRETE RELAXATIONS

Sources of relaxations

• combinatorial inequalities: packing, covering, partitioning

• logical constraints: disjunctions, SOSs, among, ...

• knapsacks and packing 0/1 IPs (Behle, 2007)

• unions and intersections of BDDs

Using BDDs

• Maximize linear objective over BDD: shortest path in acyclic graph

• Find candidate for feasible solution: one root → ⊤ path in BDD

• check feasibility in original problem: harvest solution or create cut
• BDD be amended to exclude the solution easily

• Identify don’t­care variable: Find a layer in BDD that has no nodes

For non­binary cases there are MDDs too

20



BDDS AS DISCRETE RELAXATIONS

Sources of relaxations

• combinatorial inequalities: packing, covering, partitioning

• logical constraints: disjunctions, SOSs, among, ...

• knapsacks and packing 0/1 IPs (Behle, 2007)

• unions and intersections of BDDs

Using BDDs

• Maximize linear objective over BDD: shortest path in acyclic graph

• Find candidate for feasible solution: one root → ⊤ path in BDD

• check feasibility in original problem: harvest solution or create cut
• BDD be amended to exclude the solution easily

• Identify don’t­care variable: Find a layer in BDD that has no nodes

For non­binary cases there are MDDs too

20



BDDS AS DISCRETE RELAXATIONS

Sources of relaxations

• combinatorial inequalities: packing, covering, partitioning

• logical constraints: disjunctions, SOSs, among, ...

• knapsacks and packing 0/1 IPs (Behle, 2007)

• unions and intersections of BDDs

Using BDDs

• Maximize linear objective over BDD: shortest path in acyclic graph

• Find candidate for feasible solution: one root → ⊤ path in BDD

• check feasibility in original problem: harvest solution or create cut
• BDD be amended to exclude the solution easily

• Identify don’t­care variable: Find a layer in BDD that has no nodes

For non­binary cases there are MDDs too

20



Summary



SUMMARY

Ingredients

• non­dominated solution of monotone optimization problem

• BDD encoding of discrete sets

• sometimes: output­linear time construction of BDDs

• always: use of BDDs for computation
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QUESTIONS?

uhaus@hpe.com
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