Skip to content

Publications

...as of April 28th, 2022.

Here we list the project results of our young researchers in the form of publications of any kind (i.e. not all articles are published/accepted yet). We note that as a consortium we have produced more publications, but as we focus on young researchers we only list their publications.

Dissertations

Articles in Journals

  • Adelhütte, D., Aßmann, D., Grandòn, T.G. et al. Joint Model of Probabilistic-Robust (Probust) Constraints Applied to Gas Network Optimization. Vietnam J. Math. 49, 1097–1130 (2021). https://doi.org/10.1007/s10013-020-00434-y
  • Brosch, D., de Klerk, E. Minimum energy configurations on a toric lattice as a quadratic assignment problem. Discrete Optimization. (2020). https://doi.org/10.1016/j.disopt.2020.100612
  • Brosch D., de Klerk, E. Jordan symmetry reduction for conic optimization over the doubly nonnegative cone: theory and software, Optimization Methods and Software. (2022). https://doi.org/10.1080/10556788.2021.2022146
  • Brosch, D., Laurent, M., Steenkamp, A. Optimizing Hypergraph-Based Polynomials Modeling Job-Occupancy in Queuing with Redundancy Scheduling. SIAM Journal on Optimization. (2021). https://doi.org/10.1137/20m1369592
  • Castro-Silva D., de Oliveira Filho FM., Slot L., Vallentin F. A recursive Lovász theta number for simplex-avoiding sets. Proceedings of the American Mathematical Society. (2022). Available here.
  • Cerulli, M., D’Ambrosio, C., Liberti, L. et al. Detecting and solving aircraft conflicts using bilevel programming. J Glob Optim 81, 529–557 (2021). https://doi.org/10.1007/s10898-021-00997-1
  • Cerulli, M., Liberti, L. Polynomial programming prevents aircraft (and other) conflicts. Operations Research Letters. (2021). https://doi.org/10.1016/j.orl.2021.05.001
  • Gudapati, NVC, Malaguti, E, Monaci, M. In search of dense subgraphs: How good is greedy peeling?. Networks.. 2021; 77: 572– 586. https://doi.org/10.1002/net.22034
  • Gusmeroli, N., Wiegele, A. EXPEDIS: An exact penalty method over discrete sets. Discrete Optimization. (2021). https://doi.org/10.1016/j.disopt.2021.100622
  • Leithäuser, N., Adelhütte, D., Braun K. et al (2022). Decision-Support Systems For Ambulatory Care, Including Pandemic Requirements: Using Mathematically Optimized Solutions. BMC Medical Informatics and Decision Making (2022). Accepted.  Available as a preprint here.
  • Slot, L., Laurent, M. Improved convergence analysis of Lasserre’s measure-based upper bounds for polynomial minimization on compact sets. Math. Program. (2020). https://doi.org/10.1007/s10107-020-01468-3
  • Slot, L., Laurent, M. Near-optimal analysis of Lasserre’s univariate measure-based bounds for multivariate polynomial optimization. Math. Program. 188, 443–460 (2021). https://doi.org/10.1007/s10107-020-01586-y
  • Slot, L., Laurent, M. Sum-of-squares hierarchies for binary polynomial optimization. Math. Program. (2022). https://doi.org/10.1007/s10107-021-01745-9
  • Wiegele, A., Zhao, S. SDP-based bounds for graph partition via extended ADMM. Comput Optim Appl 82, 251–291 (2022). https://doi.org/10.1007/s10589-022-00355-1

Chapter in a Book

Conference Papers

  • Slot, L., Laurent, M. (2021). Sum-of-Squares Hierarchies for Binary Polynomial Optimization. In: Singh, M., Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2021. Lecture Notes in Computer Science(), vol 12707. Springer, Cham. https://doi.org/10.1007/978-3-030-73879-2_4

Publication in Conference proceedings

  • Cerulli, M., D’Ambrosio, C., Liberti, L. (2019). On aircraft deconfliction by Bilevel Programming. In: Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization. Available here.
  • Gentile, C., Rinaldi G., Salgado E., Tran BD. (2020). In: 18th Cologne-Twente Workshop on Graphs and Combinatorial Optimization. Available here.

Technical Reports

  • Adelhütte, D., Biefel, C., Kuchlbauer, M., Rolfes, J. (2021). Pareto Robust optimization on Euclidean vector spaces. Under Revision. Available here.
  • Adelhütte, D., Braun, K., Liers, F., Tschuppik, S. (2021). Minimizing Delays of Patient Transports with Incomplete Information. Under Revision. Available here (last modification: December 2021).
  • Adelhütte, D., Liers, F. (2020). Γ-counterparts for robust nonlinear combinatorial and discrete optimization. Under Revision. Available here (last modification: December 2021).
  • Castro-Silva D. (2021). Geometrical sets with forbidden configurations. Under Revision. Available here (last modification: July 2021).
  • Castro-Silva D. (2021). Quasirandomness in additive groups and hypergraphs. Under Revision. Available here.
  • Detienne, B., Lefebvre H., Malaguti E., Monaci M. (2021) .Adaptive robust optimization with objective uncertainty. Under Revision. Available here.
  • Gudapati NVC., Malaguti E., Monaci M. (2021). Network Design with Service Requirements: Scaling-up the Size of Solvable Problems. Under Revision. Available here.
  • Gusmeroli, N., Hrga T., Lužar B. et al (2020). BiqBin: a parallel branch-and-bound solver for binary quadratic problems with linear constraints. Under Revision. Available here (last modification: May 2021).
  • Laurent, M., Slot, L. (2021). An effective version of Schmüdgen's Positivstellensatz for the hypercube. Under Revision. Available here.
  • Wiegele, A., Zhao, S. (2021). Tight SDP relaxations for cardinality-constrained problems. Under Revision. Available here.
  • Wolf, N., Escalona P., Angulo A.,  Weston J. (2022). On Carbon Taxes Effectiveness to Induce a Clean Technology Transition: An Evaluation Framework Based on Optimal Strategic Capacity Planning. Under Revision. Available here.